Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The Pump

Also a pump is a chemodynamic machine. The experimental setup is shown in Fig. 9.9. We want to pump an incompressible liquid. We sketch here the steps only briefly  [Pg.291]

We go for a moment back to the paddle wheel. With the paddle wheel this aspect is not visible in all clarity, because the paddle wheel is a well-constructed machine. We therefore invent a paddle wheel that consists of only one paddle. If the paddle with the water moves downward, then rotational energy is delivered into the shaft. The paddle empties down completely. Now the empty paddle must be lifted, and here rotational energy is given back through the shaft. [Pg.291]

Modern analytical HPLC pumps are capable of pumping flow rates as low as 1 or 10 pL/min up to 5 or 10 mL/min. Since the efficiency in separation increases as the flow decreases, flow rates are generally maintained low. [Pg.48]


Relief systems are expensive and introduce considerable environmental problems. Sometimes it is possibly to dispense with relief valves and all that comes after them by using stronger vessels, strong enough to withstand the highest pressures that can be reached. For example, if the vessel can withstand the pump delivery pressure, then a relief valve for overpressurization by the pump may not be needed. However, there may still be a need for a small relief device to guard against overpressurization in the event of a fire. It may be possible to avoid the need for a relief valve on a distillation column... [Pg.265]

This property should also be within precise limits. In fact, a too-viscous fuel increases pressure drop in the pump and injectors which then tends to diminish the injection pressure and the degree of atomization as well as affecting the process of combustion. Inversely, insufficient viscosity can cause seizing of the Injection pump. [Pg.214]

To lessen the risk of pumping sludges or slurries into a unit, the practice is to leave a safety margin of 50 cm (heel) below the outlet nozzle or install a strainer on the pump suction line. The deposits accumulate with time and the tanks are periodically emptied and cleaned. [Pg.327]

Sometimes primary cementations are not successful, for instance if the cement volume has been wrongly calculated, if cement is lost into the formation or if the cement has been contaminated with drilling fluids. In this case a remedial or secondary cementation is required. This may necessitate the perforation of the casing a given depth and the pumping of cement through the perforations. [Pg.56]

The principle of operation of the hydraulic reciprocating pump is similar to the beam pump, with a piston-like sub-surface pump action. The energy to drive the pump, however, is delivered through a hydraulic medium, the power fluid, commonly oil or water. The power fluid drives a downhole hydraulic motor which in turn drives the pump. A separate surface pump delivers the hydraulic power. The power fluid system can be of the closed loop or of the open type. In the latter case, the power fluids are mixed with the produced fluid stream. The performance of the hydraulic pump is primarily monitored by measuring the discharge pressures of both surface and sub-surface pumps. [Pg.231]

The failure mode of an equipment item describes the reason for the failure, and is often determined by analysing what causes historic failures in the particular item. This is another good reason for keeping records of the performance of equipment. For example, if it is recognised that a pump typically fails due to worn bearings after 8,000 hours in operation, a maintenance strategy may be adopted which replaces the bearings after 7,000 hours if that pump is a critical item. If a spare pump is available as a back-up, then the policy may be to allow the pump to run to failure, but keep a stock of spare parts to allow a quick repair. [Pg.288]

This paper deals with the control of weld depth penetration for cylinders in gold-nickel alloy and tantalum. After introducing the experimental set-up and the samples description, the study and the optimization of the testing are presented for single-sided measurements either in a pulse-echo configuration or when the pump and the probe laser beams are shifted (influence of a thermal phenomenon), and for different kind of laser impact (a line or a circular spot). First, the ultrasonic system is used to detect and to size a flat bottom hole in an aluminium plate. Indeed, when the width of the hole is reduced, its shape is nearly similar to the one of a slot. Then, the optimization is accomplished for... [Pg.693]

Fig. 4 Testing configurations of the pump-probe system (a) pulse-echo configuration, (b) split... Fig. 4 Testing configurations of the pump-probe system (a) pulse-echo configuration, (b) split...
Then, the weld depths penetration are controlled in a pulse-echo configuration because the weld bead (of width 2 mm) disturbs the detection when the pump and the probe beams are shifted of 2.2 mm. The results are presented in figure 8 (identical experimental parameters as in figure 7). The slow propagation velocities for gold-nickel alloy involve that the thermal component does not overlap the ultrasonic components, in particular for the echo due to the interaction with a lack of weld penetration. The acoustic response (V shape) is still well observed both for the slot of height 1.7 mm and for a weld depth penetration of 0.8 mm (lack of weld penetration of 1.7 mm), even with the weld bead. This is hopeful with regard to the difficulties encountered by conventional ultrasound in the case of the weld depths penetration. [Pg.698]

Figure Al.6.31. Multiple pathway interference interpretation of pump-dump control. Since each of the pair of pulses contains many frequency components, there are an infinite number of combination frequencies which lead to the same fmal energy state, which generally interfere. The time delay between the pump and... Figure Al.6.31. Multiple pathway interference interpretation of pump-dump control. Since each of the pair of pulses contains many frequency components, there are an infinite number of combination frequencies which lead to the same fmal energy state, which generally interfere. The time delay between the pump and...
Resonant processes of some importance include resonant electronic to electronic energy transfer (E-E), such as the pumping process of the iodine atom laser... [Pg.1054]

A RIKES experunent is essentially identical to that of CW CARS, except the probe laser need not be tunable. The probe beam is linearly polarized at 0° (—>), while the polarization of the tunable pump beam is controlled by a linear polarizer and a quarter waveplate. The pump and probe beams, whose frequency difference must match the Raman frequency, are overlapped in the sample (just as in CARS). The strong pump beam propagating tlirough a nonlinear medium induces an anisotropic change in the refractive mdices seen by tlie weaker probe wave, which alters the polarization of a probe beam [96]. The signal field is polarized orthogonally to the probe laser and any altered polarization may be detected as an increase in intensity transmitted tlirough a crossed polarizer. When the pump beam is Imearly polarized at 45° y), contributions... [Pg.1207]

Since there is a definite phase relation between the fiindamental pump radiation and the nonlinear source tenn, coherent SH radiation is emitted in well-defined directions. From the quadratic variation of P(2cii) with (m), we expect that the SH intensity 12 will also vary quadratically with the pump intensity 1 ... [Pg.1270]

Flere we model the pump beams associated with fields E(a> ) and (102) as plane waves with wavevectors Jti = and Jt, = feiwiv/fii (wil/r - The directions of tlie reflected and transmitted beams can... [Pg.1277]

For some experiments, it may be helpfiil to obtain a reference signal to correct for fluctuations and long-tenu drift in the pump laser. This correction is best accomplished by perfonumg simultaneous measurements of the... [Pg.1281]

Figure Bl.5.8 Random distribution of (a) non-chiral adsorbates that gives rise to a surfaee having effeetive oo m-synnnetry (b) ehiral moleeules that gives rise to effeetive oo-synnnetry. (e) SH intensity versus the angle of an analyser for a raeemie (squares) and a non-raeemie (open eireles) monolayer of ehiral moleeules. The pump beam was p-polarized the SH polarization angles of 0° and 90° eorrespond to s- and p-polarization, respeetively. (From [70].)... Figure Bl.5.8 Random distribution of (a) non-chiral adsorbates that gives rise to a surfaee having effeetive oo m-synnnetry (b) ehiral moleeules that gives rise to effeetive oo-synnnetry. (e) SH intensity versus the angle of an analyser for a raeemie (squares) and a non-raeemie (open eireles) monolayer of ehiral moleeules. The pump beam was p-polarized the SH polarization angles of 0° and 90° eorrespond to s- and p-polarization, respeetively. (From [70].)...
In a typical time-resolved SHG (SFG) experiment using femtosecond to picosecond laser systems, two (tlnee) input laser beams are necessary. The pulse from one of the lasers, usually called the pump laser, induces the... [Pg.1296]

FigureBl.5.16 Rotational relaxation of Coumarin 314 molecules at the air/water interface. The change in the SFI signal is recorded as a fimction of the time delay between the pump and probe pulses. Anisotropy in the orientational distribution is created by linearly polarized pump radiation in two orthogonal directions in the surface. (After [90].)... FigureBl.5.16 Rotational relaxation of Coumarin 314 molecules at the air/water interface. The change in the SFI signal is recorded as a fimction of the time delay between the pump and probe pulses. Anisotropy in the orientational distribution is created by linearly polarized pump radiation in two orthogonal directions in the surface. (After [90].)...
With help of the four-level diagram of the =I= system (see figure BL15.8 two conniion ways for recording ELDOR spectra will be illnstrated. In freqnency-swept ELDOR the magnetic field is set at a value that satisfies the resonance condition for one of the two EPR transitions, e.g. 4<- 2, at the fixed observe klystron frequency, The pump klystron is then turned on and its frequency, is swept. When the pump... [Pg.1571]

The pump-probe concept can be extended, of course, to other methods for detection. Zewail and co-workers [16,18, 19 and 2Q, 93] have used the probe pulse to drive population from a reactive state to a state that emits fluorescence [94, 95, 96, 97 and 98] or photodissociates, the latter situation allowing the use of mass spectrometry as a sensitive and selective detection method [99, 100]. [Pg.1979]

Pump-probe absorption experiments on the femtosecond time scale generally fall into two effective types, depending on the duration and spectral width of the pump pulse. If tlie pump spectrum is significantly narrower in width than the electronic absorption line shape, transient hole-burning spectroscopy [101. 102. 103. 104. 105. 106. 107. 108. 109. 110. 111. 112 and 113] can be perfomied. The second type of experiment, dynamic absorption spectroscopy [57, 114. 115. 116. 117. 118. 119. 120. 121 and 122], can be perfomied if the pump and probe pulses are short compared to tlie period of the vibrational modes that are coupled to the electronic transition. [Pg.1979]

The main cost of this enlianced time resolution compared to fluorescence upconversion, however, is the aforementioned problem of time ordering of the photons that arrive from the pump and probe pulses. Wlien the probe pulse either precedes or trails the arrival of the pump pulse by a time interval that is significantly longer than the pulse duration, the action of the probe and pump pulses on the populations resident in the various resonant states is nnambiguous. When the pump and probe pulses temporally overlap in tlie sample, however, all possible time orderings of field-molecule interactions contribute to the response and complicate the interpretation. Double-sided Feymuan diagrams, which provide a pictorial view of the density matrix s time evolution under the action of the laser pulses, can be used to detenuine the various contributions to the sample response [125]. [Pg.1980]

Figure B2.5.8. Schematic representation of laser-flash photolysis using the pump-probe technique. The beam splitter BS splits the pulse coming from the laser into a pump and a probe pulse. The pump pulse initiates a reaction in the sample, while the probe beam is diverted by several mirrors M tluough a variable delay line. Figure B2.5.8. Schematic representation of laser-flash photolysis using the pump-probe technique. The beam splitter BS splits the pulse coming from the laser into a pump and a probe pulse. The pump pulse initiates a reaction in the sample, while the probe beam is diverted by several mirrors M tluough a variable delay line.

See other pages where The Pump is mentioned: [Pg.117]    [Pg.149]    [Pg.230]    [Pg.288]    [Pg.342]    [Pg.695]    [Pg.696]    [Pg.697]    [Pg.263]    [Pg.264]    [Pg.875]    [Pg.875]    [Pg.1202]    [Pg.1278]    [Pg.1280]    [Pg.1281]    [Pg.1297]    [Pg.1297]    [Pg.1572]    [Pg.1970]    [Pg.1979]    [Pg.1980]    [Pg.1980]    [Pg.1981]    [Pg.1983]    [Pg.1985]    [Pg.2063]    [Pg.2126]   


SEARCH



Calculating the flow pumped through a pipe

Condensable Components in the Medium to Be Pumped

Design, fabrication, and modeling of the pump

Dry Compressing, Three-Stage Roots Vacuum Pump with Exhaust, Respectively Non-Return Valves between the Stages

Example of a category 3 accident instantaneous power loss to all the primary pumps

Galvano-Static Mode of the Oxygen Pump

How should the Cleaning Pump Be Sized

Hyperfine pumping and the measurement

Leak in the pump system

Leviathan and the Air-Pump

Operating defects while pumping with gas ballast Potential sources of error where the required ultimate pressure is not achieved

Optimization of Pumping Rates in the Through-Flow System

Potentiometric Mode of the Oxygen Pump

Pressures inside the pump

Priming the pump

Pump Repairs Potentially Endanger the Plant—But Are Corrected in Time to Prevent Newspaper Headlines

Pump feeding the pipeline from an upstream tank

Pumping Ions with the Help of Biotin

Pumping speed and position of the cryopanels

Quantitative Description of the Pumping Process

Quantum theory of the optical pumping

Regulation of the Serca-Type Ca2 Pumps in Smooth Muscle Cells

Schematic representation of the ocean biological pump

Sealing the Centrifugal Chemical Pump

Separation in the Periodic Pump-out Regime

Survey of the most usual pumping processes

Temperature rise across the pump

The Co-rotating Disk Pump

The Heat Pump

The Normal Stress Pump

The One-Color Pump-Probe Experiment

The Pump Casing

The Purpose of Pumps

The Single Screw Extruder Pump

The Solvent Pump

The Vacuum Pump

The Various Mechanical Pump Oils

The air-lift pump

The centrifugal pump

The effects of vapor pressure on pump performance

The modern HPLC pump

The proportioning pump

The proton pump

The pumping arrangements

The pumps minimum requirements (NPSH)

The short-stroke piston pump

© 2024 chempedia.info