Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Types of Effects

Pertiaps the most obvious experiment is to compare the rate of a reaction in the presence of a solvent and in the absence of the solvent (i.e., in the gas phase). This has long been possible for reactions proceeding homolytically, in which little charge separation occurs in the transition state for such reactions the rates in the gas phase and in the solution phase are similar. Very recently it has become possible to examine polar reactions in the gas phase, and the outcome is greatly different, with the gas-phase reactivity being as much as 10 greater than the reactivity in polar solvents. This reduced reactivity in solvents is ascribed to inhibition by solvation in such reactions the role of the solvent clearly overwhelms the intrinsic reactivity of the reactants. Gas-phase kinetic studies are a powerful means for interpreting the reaction coordinate at a molecular level. [Pg.385]

Most of what we know about solvent effects is a result of studies in which the reactivity is compared in a series of solvents. There are two main types of experimental design in one of these the reaction is carried out in different pure solvents in the other design the reaction is studied in mixed solvents, often a binary mixture whose composition is varied across the entire range. Experimental limitations often [Pg.385]

There is a third experimental design often used for studies in electrolyte solutions, particularly aqueous solutions. In this design the reaction rate is studied as a function of ionic strength, and a rate variation is called a salt effect. In Chapter 5 we derived this relationship between the observed rate constant k and the activity coefficients of reactants l YA, yB) and transition state (y )  [Pg.386]

An effect of ionic strength on as a consequence of effects on the activity coefficient ratio is called a primary salt effect. We will, in Section 8.3, consider this effect quantitatively. [Pg.386]

If the rate equation contains the concentration of a species involved in a preequilibrium step (often an acid-base species), then this concentration may be a function of ionic strength via the ionic strength dependence of the equilibrium constant controlling the concentration. Therefore, the rate constant may vary with ionic strength through this dependence this is called a secondary salt effect. This effect is an artifact in a sense, because its source is independent of the rate process, and it can be completely accounted for by evaluating the rate constant on the basis of the actual species concentration, calculated by means of the equilibrium constant appropriate to the ionic strength in the rate study. [Pg.386]


Before entering the detailed discussion of physical and chemical adsorption in the next two chapters, it is worthwhile to consider briefly and in relatively general terms what type of information can be obtained about the chemical and structural state of the solid-adsorbate complex. The term complex is used to avoid the common practice of discussing adsorption as though it occurred on an inert surface. Three types of effects are actually involved (1) the effect of the adsorbent on the molecular structure of the adsorbate, (2) the effect of the adsorbate on the structure of the adsorbent, and (3) the character of the direct bond or local interaction between an adsorption site and the adsorbate. [Pg.582]

A catalyst may play an active role in a different sense. There are interesting temporal oscillations in the rate of the Pt-catalyzed oxidation of CO. Ertl and coworkers have related the effect to back-and-forth transitions between Pt surface structures [220] (note Fig. XVI-8). See also Ref. 221 and citations therein. More recently Ertl and co-workers have produced spiral as well as plane waves of surface reconstruction in this system [222] as well as reconstruction waves on the Pt tip of a field emission microscope as the reaction of H2 with O2 to form water occurred [223]. Theoretical simulations of these types of effects have been reviewed [224]. [Pg.723]

The present high cost of full CASSCF direct dynamics means that it is not possible to use such calculations to run large numbers of trajectories. As a result it cannot be used to build up experience of the types of effects to be found in dynamical studies of organic photochemistry, and in their interpretation. This problem can be remedied by performing calculations using the MMVB force field [63,64]. [Pg.301]

The simulation of molecules in solution can be broken down into two categories. The first is a list of elfects that are not defined for a single molecule, such as diffusion rates. These types of effects require modeling the bulk liquid as discussed in Chapters 7 and 39. The other type of effect is a solvation effect, which is a change in the molecular behavior due to the presence of a solvent. This chapter addresses this second type of effect. [Pg.206]

For any pollutant, air quality criteria may refer to different types of effects. For example. Tables 22-1 through 22-6 list effects on humans, animals, vegetation, materials, and the atmosphere caused by various exposures to sulfur dioxide, particulate matter, nitrogen dioxide, carbon monoxide, ozone, and lead. These data are from fhe Air Quality Criteria for these pollutants published by the U.S. Environmental Protection Agency. [Pg.367]

With block copolymers two types of effect have been observed. In some instances a transition corresponding to each block is observable whilst in other cases a single transition is observed, usually close to that predicted by a linear relationship even where random copolymers show large deviations. This is because the blocks reduce both the contacts between dissimilar comonomer residues and also the disorder of the molecules which occurs in random copolymer systems. [Pg.63]

Tlie reader should also note that tlie risk to people can be defined in terms of injury or fatality. The use of injuries as a basis of risk evaluation may be less disturbing tlian tlie use of fatalities. However, tliis introduces problems associated with degree of injury and comparability between different types of injuries. Further complications am arise in a risk assessment when dealing witli multiple hazards. For example, how are second-degree bums, fragment injuries, and injuries due to toxic gas e.xposure combined Even where only one type of effect (e.g., tlueshold to.xic exposure) is being evaluated, different durations of e.xposure can markedly affect tlie severity of injury. [Pg.515]

There has been some question as to whether it is even meaningful to maintain the distinction between the two types of effect see Grob, C.A. Helv. Chim. Acta, 1985, 68, 882 Lenoir, D. Frank, R.M. Chem. Ben, 1985, 118, 753 Sacher, E. Tetrahedron, Lett, 1986, 27, 4683. [Pg.28]

In conclusion it should be mentioned that the same type of effects are possible for p-type electrodes. In this case an anodic dark current occurs whereas the photocurrent corresponds to an electron transfer via the conduction band (cathodic plEiotocurrent). [Pg.87]

Various phenallcylamines were shown to produce either DOM-like or AMPH-like stimulus effects the structure-activity requirements for these activities are different from the standpoints of aromatic substitution patterns, terminal amine substituents, and optical activity. Thus, it has been possible to formulate two distinct SARs. It should be realized, however, that phenalkylamines need not produce only one of these two types of effects certain phenallcylamines can produce pharmacological effects like neither DOM nor AMPH. Moreover, they can produce effects that are primarily peripheral, not central, in nature (Glennon 1987a). The fact that an agent produced DOM- or AMPH-like effects does not imply that it carmot produce an additional effect conversely, if an agent does not produce either DOM- or AMPH-like stimulus effects, it is not necessarily inactive. [Pg.45]

MDA is unique. Not only does it produce both types of effects, but it seems to conflict with some of the above-mentioned SARs. For example, aromatic-substituted phenalkylamines such as the 3-methoxy and 4-methoxy derivatives MMA and PMA arc only weak AMPH-like agents, and the... [Pg.52]

Because of the nature of modern pharmaceutical systems, formulators have made more complete investigations of the materials they use. This interest has identified several materials that may have more than one use in tableted systems. The type of effect that an excipient will produce is often dependent upon the concentration in which it is used. For example, Table 5 lists some multiuse excipients and the corresponding concentration ranges required for their various applications. [Pg.297]

This series shows that some ligands give a trans effect that is made up of contributions from each type of interaction, but ligands that give large trans effects generally do so by only one dominant type of effect that is either a or ty in origin. [Pg.724]

Examples of the operation of both types of effect have been documented. Nevertheless, while these effects are useful concepts, as mentioned previously, very often the role of the metal ion in a given in situ reaction may be quite complex and, for instance, involve aspects of both effects. As well, the metal may play less obvious roles in such processes. For example, it may mask or activate individual functional groups or influence the reaction in other ways not directly related to the more readily defined steric influences inherent in both template effects. [Pg.28]

Over the last four decades, cAMP has been shown to serve as an intracellular second messenger for numerous extracellular signals in the nervous system. In fact, the number of functional processes regulated by cAMP is too large to enumerate here in detail. It is important, however, to review the general types of effects that cAMP exerts in neurons. [Pg.375]

The discovery of in vitro anti-HIV activity of macrocyclic polyamines by the Kimura and De Clercq groups led to development of a new type of effective anti-HIV agents. The results from the studies of the pharmacokinetics and their in vivo efficacy in a SCID-hu Thy/Liv mice are further encouraging indicators of their potential usefulness as new AIDS curing drugs. [Pg.162]

Types of Effects Route Absorption Description of Effects When Effects Appear after Exposure... [Pg.446]

Types of Effects Route of Absorption Mild Exposure Severe Exposure... [Pg.447]

Non-pairwise hydrodynamical forces. We should finally take into account hydrodynamical interactions between two particles where, in some intermediate states, we would have a temporary excitation of ions. This type of effect would lead to a kind of effective hydrodynamical force and is indicated in Fig. 26. [Pg.271]


See other pages where Types of Effects is mentioned: [Pg.731]    [Pg.204]    [Pg.447]    [Pg.579]    [Pg.385]    [Pg.318]    [Pg.319]    [Pg.320]    [Pg.97]    [Pg.96]    [Pg.17]    [Pg.906]    [Pg.212]    [Pg.63]    [Pg.146]    [Pg.164]    [Pg.162]    [Pg.18]    [Pg.74]    [Pg.204]    [Pg.329]    [Pg.36]    [Pg.236]    [Pg.6]    [Pg.593]    [Pg.550]    [Pg.373]    [Pg.398]    [Pg.137]    [Pg.32]   


SEARCH



© 2024 chempedia.info