Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The Chromatographic Process

Similarly, with molecules, their speed of movement through the chromatographic column depends on the time spent in the mobile phase compared with that in the stationary one and on the flow rate of the mobile phase. [Pg.248]

Chromatography is a separation process in which the sample mixture is distributed between two phases in the chromatographic bed (column or plane). One phase is stationary whilst the other passes through the chromatographic bed. The stationary phase is either a solid, porous, surface-active material in small-particle form or a thin film of liquid coated on a solid support or column wall. The mobile phase is a gas or liquid. If a gas is used, the process is known as gas chromatography the mobile phase is always liquid in all types of liquid chromatography, including the thin-layer variety. [Pg.17]

The various dyes move at different rates through the column. The six-zone separation is as follows Fat Red 7B, Sudan Yellow, Sudan Black (two components). Fat Orange, and Artisil Blue 2 RP. Compounds that tend to reside in the mobile phase move more quickly than those that prefer the stationary phase. [Pg.17]

Practical High-Performance Liquid Chromatography, Fifth edition Veronika R. Meyer [Pg.17]

The various components present must have different distribution coefficients and hence different capacity factors in the chromatographic system if the mixture is to be separated. [Pg.18]

Practical High-Performance Liquid Chromatography, Fourth edition Veronika R. Meyer 2004 John Wiley Sons, Ltd ISBN 0-470-09377-3 (Hardback) 0-470-09378-1 (Paperback) [Pg.14]


The sensitivity is very good for nickel and vanadium but for these metals for which distribution data would be of great value, the chromatographic process is the lirniting factor, heavy molecules are not eluted from the column with the exception of some porphyrins. This detector can be used to supply H/C and S/C profiles for hydrocarbon cuts with the chromatograph operating in the simulated distillation mode. [Pg.79]

There are two fundamental chromatography theories that deal with solute retention and solute dispersion and these are the Plate Theory and the Rate Theory, respectively. It is essential to be familiar with both these theories in order to understand the chromatographic process, the function of the column, and column design. The first effective theory to be developed was the plate theory, which revealed those factors that controlled chromatographic retention and allowed the... [Pg.4]

A precise mastery of the chromatographic process also requires that the relative humidity be controlled. There are sufficient examples demonstrating that reproducible development is only possible if temperature and relative humidity are maintained constant. The influence of the latter on chromatographic behavior can be investigated using the Vario KS chamber (Fig. 59). When the relative humidity IS altered it is possible that not only the zone behavior will be changed but also the order of the zones on the chromatogram (Fig. 60). [Pg.129]

Multidimensional gas chromatography has also been used in the qualitative analysis of contaminated environmental extracts by using spectral detection techniques Such as infrared (IR) spectroscopy and mass spectrometry (MS) (20). These techniques produce the most reliable identification only when they are dealing with pure substances this means that the chromatographic process should avoid overlapping of the peaks. [Pg.337]

Some ligand-exchange CSPs have been used at preparative level [31, 32]. In this case it must be taken into account that an extraction process, to remove the copper salts added to the mobile phase, must be performed following the chromatographic process [33]. Teicoplanin, in contrast, resolves all ordinary a and (3-amino acids with mobile phases consisting of alcohol/water mixtures. No buffer is needed in the... [Pg.4]

As a matter of fact, the main advantage in comparison with HPLC is the reduction of solvent consumption, which is limited to the organic modifiers, and that will be nonexistent when no modifier is used. Usually, one of the drawbacks of HPLC applied at large scale is that the product must be recovered from dilute solution and the solvent recycled in order to make the process less expensive. In that sense, SFC can be advantageous because it requires fewer manipulations of the sample after the chromatographic process. This facilitates recovery of the products after the separation. Although SFC is usually superior to HPLC with respect to enantioselectivity, efficiency and time of analysis [136], its use is limited to compounds which are soluble in nonpolar solvents (carbon dioxide, CO,). This represents a major drawback, as many of the chemical and pharmaceutical products of interest are relatively polar. [Pg.12]

At the current time, there is considerable interest in the preparative applications of liquid chromatography. In order to enhance the chromatographic process, attention is now focused on the choice of the operating mode [22]. SMB offers an alternative to classical processes (batch elution chromatography) in order to minimize solvent consumption and to maximize productivity where expensive stationary phases are used. [Pg.256]

The support materials for the stationary phase can be relatively inactive supports, e.g. glass beads, or adsorbents similar to those used in LSC. It is important, however, that the support surface should not interact with the solute, as this can result in a mixed mechanism (partition and adsorption) rather than true partition. This complicates the chromatographic process and may give non-reproducible separations. For this reason, high loadings of liquid phase are required to cover the active sites when using high surface area porous adsorbents. [Pg.218]

Thus, by careful choice of solvents, evoked by an understanding of the essential role played by the different types of molecular interactions in the chromatographic process, the solutes of interest cannot only be separated, but also eluted in a reasonable time. [Pg.236]

In analytical LC there are two primary reasons why chemical derivatization of the sample constituents would be necessary, and they are 1) to enhance the separation and 2) to increase the sensitivity of detection. Under certain circumstances, derivatization can also be used to reduce peak asymmetry, i.e. to reduce tailing, or to improve the stability of labile components so that they do not re-arrange or decompose during the chromatographic process. However, sensitivity enhancement is the most common goal of derivatization. For example, aliphatic alcohols that contain no UV chromaphore can be reacted with benzoyl chloride to form a benzoic ester. [Pg.237]

The main difference between the chromatographic process carried out in the linear and the nonlinear range of the adsorption isotherm is the fact that in the latter case, due to the skewed shapes of the concentration profiles of the analytes involved, separation performance of a chromatographic system considerably drops, i.e., the number of theoretical plates (N) of a chromatographic system indisputably lowers. In these circumstances, all quantitative models, along with semiquantitative and nonquantitative rules, successfully applied to optimization of the linear adsorption TLC show a considerably worse applicability. [Pg.39]

Optimization of the chromatographic process by Snyder s concept of solvent polarity and selectivity is in fact the optimization of the separation selectivity that... [Pg.80]

Evaluation of the polarity of a single or a solvent mixture according to the Equation 4.20 is useful when it is difficult to obtain fjfSO) by conventional methodology. This equation shows that the solvent polarity has an important effect during the chromatographic process. [Pg.83]

The elaboration of the most efficient chromatographic systems for the optimization of velocity and resolution of the chromatographic process is necessary for solving different analytical problems. The most important factor in the TLC optimization is the mobile phase composition. Taking into consideration the similarity in the retention mechanism between TLC and PLC, the optimized TLC mobile phase can be transferred to the preparative chromatographic system. There are different accepted models and theories for the separation and optimization of chromatographic systems [19,20,61]. [Pg.87]

Snyder s classification of solvent properties is important in the selection of the chromatographic conditions and the optimization of the chromatographic processes. [Pg.95]

The physical properties of the mobile phase, mainly viscosity, diffusivity and solubility, affect the flow characteristics, column efficiency (kinetics), and retention (thermodynamics) in the chromatographic process. These physical properties are affected by temperature. Chromatographic techniques, although basically simple in... [Pg.172]

Principles and Characteristics High-performance thin-layer chromatography (HPTLC), also known as planar chromatography, is an analytical technique with separation power and reproducibility superior to conventional TLC, which was first used in 1938 [7] and modified in 1958 [8]. HPTLC is based on the use of precoated TLC plates with small particle sizes (3-5 xm) and precise instruments for each step of the chromatographic process. [Pg.221]

Automated devices have been introduced for the three main steps of the chromatographic process, namely sample application, chromatogram development and evaluation. Appropriate sample application, i.e. its deposition on the plate as a small start zone, without damage to the solid-phase layer, is critical to the success of TLC. Sample application modes include spotting with the help... [Pg.221]


See other pages where The Chromatographic Process is mentioned: [Pg.248]    [Pg.106]    [Pg.111]    [Pg.501]    [Pg.3]    [Pg.21]    [Pg.24]    [Pg.69]    [Pg.599]    [Pg.78]    [Pg.7]    [Pg.10]    [Pg.2]    [Pg.144]    [Pg.239]    [Pg.82]    [Pg.124]    [Pg.292]    [Pg.16]    [Pg.64]    [Pg.69]    [Pg.171]    [Pg.300]    [Pg.340]    [Pg.7]    [Pg.525]    [Pg.728]    [Pg.844]    [Pg.963]    [Pg.117]    [Pg.173]   


SEARCH



Chromatographic processes

Process chromatograph

Process chromatographs

© 2024 chempedia.info