Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The Catalyst System

5 wt% Si02,0.4 The relative amounts of the additives have been optimized [Pg.21]

On the other hand, the effect of the electronic promoter, potassium, has been shown to be related to the kinetics of ammonia formation. Addition of 0.5% potassium oxide to the Fe-alumina catalyst resulted in a decrease in the free iron surface from 40% to ca 35% and an increase in the ammonia yield at 613 K from 0.2mol% to 0.34 mol%. The surface fractional coverage was determined by chemisorption methods to be ca 25%. This leads to the conclusion that potassium [Pg.21]

A most important result of the presence of promoters is the dramatic increase in long-term stability of catalytic activity, which is of fundamental as well as obvious practical importance. All attempts to determine the intrinsic catalytic activity of pure elemental iron under high-pressure conditions in a flow reactor are severely hampered by the pronounced sensitivity of pure iron towards contamination, and this prevents reliable steady-state measurements. Promoted iron is, on the other hand, stable in its catalytic activity for up to several years on stream. [Pg.22]

In summary, the description of the activation process needs specifically to include the effects of the structural promoters on the evolution of the bulk structure [Pg.22]


Feedstocks come mainly from catalytic cracking. The catalyst system is sensitive to contaminants such as dienes and acetylenes or polar compounds such as water, oxygenates, basic nitrogen, organic sulfur, and chlorinated compounds, which usually require upstream treatment. [Pg.376]

Other Plastics Uses. The plasticizer range alcohols have a number of other uses in plastics hexanol and 2-ethylhexanol are used as part of the catalyst system in the polymerization of acrylates, ethylene, and propylene (55) the peroxydicarbonate of 2-ethylhexanol is utilized as a polymerization initiator for vinyl chloride various trialkyl phosphites find usage as heat and light stabHizers for plastics organotin derivatives are used as heat stabHizers for PVC octanol improves the compatibHity of calcium carbonate filler in various plastics 2-ethylhexanol is used to make expanded polystyrene beads (56) and acrylate esters serve as pressure sensitive adhesives. [Pg.450]

The direct oxidation of ethylene is used to produce acetaldehyde (qv) ia the Wacker-Hoechst process. The catalyst system is an aqueous solution of palladium chloride and cupric chloride. Under appropriate conditions an olefin can be oxidized to form an unsaturated aldehyde such as the production of acroleia [107-02-8] from propjiene (see Acrolein and derivatives). [Pg.472]

Chromium Oxide-Based Catalysts. Chromium oxide-based catalysts were originally developed by Phillips Petroleum Company for the manufacture of HDPE resins subsequendy, they have been modified for ethylene—a-olefin copolymerisation reactions (10). These catalysts use a mixed sihca—titania support containing from 2 to 20 wt % of Ti. After the deposition of chromium species onto the support, the catalyst is first oxidised by an oxygen—air mixture and then reduced at increased temperatures with carbon monoxide. The catalyst systems used for ethylene copolymerisation consist of sohd catalysts and co-catalysts, ie, triaLkylboron or trialkyl aluminum compounds. Ethylene—a-olefin copolymers produced with these catalysts have very broad molecular weight distributions, characterised by M.Jin the 12—35 and MER in the 80—200 range. [Pg.399]

Rearrangement of dehydrolinalool (4) using vanadate catalysts produces citral (5), an intermediate for Vitamin A synthesis as well as an important flavor and fragrance material (37). Isomerization of the dehydrolinalyl acetate (6) in the presence of copper salts in acetic acid followed by saponification of the acetate also gives citral (38,39). Further improvement in the catalyst system has greatly improved the yield to 85—90% (40,41). [Pg.411]

In this appHcation, ZSM-5 acts as a strong, soHd acid, and may be viewed as supported on the surfaces of the crystalline zeoHte stmcture. The older, Friedel-Crafts aluminum chloride catalyzed process for ethylbenzene produces considerably more by-products and suffers from the corrosivity of the catalyst system. Because of the intermediate pore size of ZSM-5, those reactions that produce coke from larger molecules that cannot enter the ZSM-5 pore stmcture are significantly reduced, which greatly extends catalyst lifetime. [Pg.197]

Erom 1955—1975, the Ziegler-Natta catalyst (91), which is titanium trichloride used in combination with diethylaluminum chloride, was the catalyst system for propylene polymerization. However, its low activity, which is less than 1000 g polymer/g catalyst in most cases, and low selectivity (ca 90% to isotactic polymer) required polypropylene manufacturers to purify the reactor product by washing out spent catalyst residues and removing unwanted atactic polymer by solvent extraction. These operations added significantly to the cost of pre-1980 polypropylene. [Pg.203]

As a result of the work of Ziegler in Germany, Natta in Italy and Pease and Roedel in the United States, the process of co-ordination polymerisation, a process related to ionic polymerisation, became of significance in the late 1950s. This process is today used in the commercial manufacture of polypropylene and polyethylene and has also been used in the laboratory for the manufacture of many novel polymers. In principle the catalyst system used governs the way in which a monomer and a growing chain approach each other and because of this it is possible to produce stereoregular polymers. [Pg.37]

The predominance of one reaction over the other is greatly influenced by the catalyst system employed. Tertiary amine systems are often used in practice. [Pg.752]

Following their introduction in 1953, Ziegler-Natta catalysts revolutionized the field of polymer chemistry because of two advantages the resultant polymers are linear, with practically no chain branching, and they are stereochemical ly controllable. Isotactic, syndiotactic, and atactic forms can all be produced, depending on the catalyst system used. [Pg.1209]

RhCl(PPhi)i as a homogenous hydrogenation catalyst [44, 45, 52]. The mechanism of this reaction has been the source of controversy for many years. One interpretation of the catalytic cycle is shown in Figure 2.15 this concentrates on a route where hydride coordination occurs first, rather than alkene coordination, and in which dimeric species are unimportant. (Recent NMR study indicates the presence of binuclear dihydrides in low amount in the catalyst system [47].)... [Pg.95]

For the catalyst system WCU-CsHbAICIs-CzHsOH, Calderon et al. (3, 22, 46) also proposed a kinetic scheme in which one metal atom, as the active center, is involved. According to this scheme, which was applied by Calderon to both acyclic and cyclic alkenes, the product molecules do not leave the complex in pairs. Rather, after each transalkylidenation step an exchange step occurs, in which one coordinated double bond is exchanged for the double bond of an incoming molecule. In this model the decomposition of the complex that is formed in the transalkylidenation step is specified, whereas in the models discussed earlier it is assumed that the decom-plexation steps, or the desorption steps, are kinetically not significant. [Pg.164]

The catalytic system used in the Pacol process is either platinum or platinum/ rhenium-doped aluminum oxide which is partially poisoned with tin or sulfur and alkalinized with an alkali base. The latter modification of the catalyst system hinders the formation of large quantities of diolefins and aromatics. The activities of the UOP in the area of catalyst development led to the documentation of 29 patents between 1970 and 1987 (Table 6). Contact DeH-5, used between 1970 and 1982, already produced good results. The reaction product consisted of about 90% /z-monoolefins. On account of the not inconsiderable content of byproducts (4% diolefins and 3% aromatics) and the relatively short lifetime, the economics of the contact had to be improved. Each diolefin molecule binds in the alkylation two benzene molecules to form di-phenylalkanes or rearranges with the benzene to indane and tetralin derivatives the aromatics, formed during the dehydrogenation, also rearrange to form undesirable byproducts. [Pg.57]

An interesting parallel was found while the microwave-enhanced Heck reaction was explored on the C-3 position of the pyrazinone system [29]. The additional problem here was caused by the capability of the alkene to undergo Diels-Alder reaction with the 2-azadiene system of the pyrazinone. An interesting competition between the Heck reaction and the Diels-Alder reaction has been noticed, while the outcome solely depended on the substrates and the catalyst system. Microwave irradiation of a mixture of pyrazinone (Re = H), ethyl acrylate (Y = COOEt) and Pd(dppf)Cl2 resulted in the formation of a mixture of the starting material together with the cycloaddition product in a 3 1 ratio (Scheme 15). On the contrary, when Pd(OAc)2 was used in combination with the bulky phosphine ligand 2-(di-t-butylphosphino)biphenyl [41-44], the Heck reaction product was obtained as the sole product. When a mixture of the pyrazinone (Re = Ar) with ethyl acrylate or styrene and Pd(dppf)Cl2 was irradiated at 150 °C for 15 min, both catalytic systems favored the Heck reaction product with no trace of Diels-Alder adduct. [Pg.278]

Pyrazinone bearing a phenylalkynyl substituent at position C-3, was prepared in 47% yield via Sonogashira reaction with 7 equiv of phenylacetylene in a mixture of toluene/triethylamine (2 1) using Pd[P(Ph3)2]Cl2 and Cul as the catalyst system (Scheme 37). [Pg.294]


See other pages where The Catalyst System is mentioned: [Pg.21]    [Pg.77]    [Pg.134]    [Pg.156]    [Pg.356]    [Pg.411]    [Pg.430]    [Pg.459]    [Pg.342]    [Pg.51]    [Pg.54]    [Pg.340]    [Pg.228]    [Pg.228]    [Pg.23]    [Pg.368]    [Pg.38]    [Pg.696]    [Pg.307]    [Pg.128]    [Pg.222]    [Pg.559]    [Pg.559]    [Pg.250]    [Pg.138]    [Pg.141]    [Pg.141]    [Pg.158]    [Pg.161]    [Pg.164]    [Pg.225]    [Pg.51]    [Pg.21]    [Pg.316]    [Pg.211]    [Pg.211]   


SEARCH



Catalyst system

The Different Catalyst Systems

The Nature of Catalyst Systems

The Rhodium Catalyst System

© 2024 chempedia.info