Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Testing protocols quality controls

The documents shall be verified, approved, and filed the necessary documents are protocol, records for operation, in-process control parameters, specification test as quality control, and final report. [Pg.240]

No adjuvant is licensed as a medicinal product in its own right, but only as a component of a particular vaccine. Therefore preclinical and toxicology studies need to be designed on a case-by-case basis to evaluate the safety profile of the adjuvant and adjuvant/ vaccine combination [60], Evaluation in preclinical studies is important for identifying the optimum composition and formulation process and also for allowing development of tests for quality control [61]. Data from these studies also helps plan protocols for subsequent clinical trials from which safety and efficacy in humans can be evaluated. [Pg.695]

The establishment of performance criteria for a given tumor marker test is not a simple process because accuracy and precision are unique for each type of analyte and its application. Establishing methodological limits for accuracy, precision, sensitivity, and specificity often requires standard reference materials, quality control materials, comparative studies, and actual clinical specimens. Accuracy and precision must be measured over the analyte reportable range for which the device is intended to be used. Sensitivity and specificity must be considered with respect to the intended clinical use of the device. Also, the indications for use should be carefully considered in the design of the study protocol. The indications for class II should be to monitor residual tumor after surgery (or radiation), the recurrence of tumor, or response to therapy. A 510(k) must provide clear evidence that the device is accurate, safe, effective, and substantially equivalent to a device legally marketed in the United States. [Pg.176]

Method performance study All laboratories follow the same written protocol and use the same test method to measure a quantity (usually concentration of an analyte) in sets of identical test samples. The results are used to estimate the performance characteristics of the method, which are usually within-laboratory- and between-laboratory precision and - if relevant - additional parameters such as sensitivity, limit of detection, recovery, and internal quality control parameters (IUPAC Orange Book [1997, 2000]). [Pg.252]

The endpoint measurement of the ideal test system must be objective, so that a given compound will give similar results when tested using the standard test protocol in different laboratories. If it is not possible to obtain reproductive results in a given laboratory over time or between various laboratories, then the historical database against which new compounds are evaluated will be time- and laboratory-dependent. Along these lines, it is important for the test protocol to incorporate internal standards to serve as quality controls. Thus, test data could be represented utilizing a reference scale based on the test system response to the internal controls. Such normalization, if properly documented, could reduce intertest variability. [Pg.642]

ISO, IUPAC and AOAC INTERNATIONAL have co-operated to produce agreed protocols on the Design, Conduct and Interpretation of Collaborative Studies 14 and on the Proficiency Testing of [Chemical] Analytical Laboratories .11 The Working Group that produced these protocols has prepared a further protocol on the internal quality control of data produced in analytical laboratories. The document was finalised in 1994 and published in 1995 as the Harmonised Guidelines For Internal Quality Control In Analytical Chemistry Laboratories .12 The use of the procedures outlined in the Protocol should aid compliance with the accreditation requirements specified above. [Pg.85]

Internal quality control is undertaken by the inclusion of particular reference materials, called control materials , into the analytical sequence and by duplicate analysis. The control materials should, wherever possible, be representative of the test materials under consideration in respect of matrix composition, the state of physical preparation and the concentration range of the analyte. As the control materials are treated in exactly the same way as the test materials, they are regarded as surrogates that can be used to characterise the performance of the analytical system, both at a specific time and over longer intervals. Internal quality control is a final check of the correct execution of all of the procedures (including calibration) that are prescribed in the analytical protocol and all of the other quality assurance measures that underlie good analytical practice. IQC is therefore necessarily retrospective. It is also required to be as far as possible independent of the analytical protocol, especially the calibration, that it is designed to test. [Pg.86]

While methods validation and accuracy testing considerations presented here have been frequently discussed in the literature, they have been included here to emphasize their importance in the design of a total quality control protocol. The Youden two sample quality control scheme has been adapted for continuous analytical performance surveillance. Methods for graphical display of systematic and random error patterns have been presented with simulated performance data. Daily examination of the T, D, and Q quality control plots may be used to assess analytical performance. Once identified, patterns in the quality control plots can be used to assist in the diagnosis of a problem. Patterns of behavior in the systematic error contribution are more frequent and easy to diagnose. However, pattern complications in both error domains are observed and simultaneous events in both T and D plots can help to isolate the problems. Point-by-point comparisons of T and D plots should be made daily (immediately after the data are generated). Early detection of abnormal behavior reduces the possibility that large numbers of samples will require reanalysis. [Pg.269]

Traditionally, the education that chemists and chemistry laboratory technicians receive in colleges and universities does not prepare them adequately for some important aspects of the real world of work in their chosen field. Today s industrial laboratory analyst is deeply involved with such job issues as quality control, quality assurance, ISO 9000, standard operating procedures, calibration, standard reference materials, statistical control, control charts, proficiency testing, validation, system suitability, chain of custody, good laboratory practices, protocol, and audits. Yet, most of these terms are foreign to the college graduate and the new employee. [Pg.3]

The physicochemical and other properties of any newly identified drug must be extensively characterized prior to its entry into clinical trials. As the vast bulk of biopharmaceuticals are proteins, a summary overview of the approach taken to initial characterization of these biomolecules is presented. A prerequisite to such characterization is initial purification of the protein. Purification to homogeneity usually requires a combination of three or more high-resolution chromatographic steps. The purification protocol is designed carefully, as it usually forms the basis of subsequent pilot and process-scale purification systems. The purified product is then subjected to a battery of tests, which aim to characterize it fully. Moreover, once these characteristics have been defined, they form the basis of many of the quality control (QC) identity tests routinely performed on the product during its subsequent commercial manufacture. As these identity tests are discussed in detail in Chapter 3, only an abbreviated overview is presented here, in the form of Figure 2.7. [Pg.57]

Concurrent validation is conducted under a protocol during the course of normal production. The first three production-scale batches must be monitored as comprehensively as possible. The evaluation of the results is used in establishing the acceptance criteria and specifications of subsequent in-process control and final product testing. Some form of concurrent validation, using statistical process control techniques (quality control charting), may be used throughout the product manufacturing life cycle. [Pg.39]

In the preceding discussion of areas of interest to the validation organization, two concepts were introduced that deserve further clarification (1) critical process steps and quality control tests that characterize the operation, and (2) validation protocol. [Pg.75]

At the completion of the documentation, a final report should be drafted to indicate the conclusion and acceptability of the installation. The final report must be approved by the departments that approved the protocol. These are likely to be engineering/technology, production quality assurance/quality control and operations, and the validation manager. Approval of the final report by the relevant departments makes the way clear for proceeding with operational testing. [Pg.647]

After an application for a new drug product is approved, quality control tests must be established to demonstrate that the container closure system and all of its components possess the characteristics established in the original suitability studies. The appropriate packaging system should be included in all applicable stability protocols and observed for instability and drug product leachables. [Pg.1696]


See other pages where Testing protocols quality controls is mentioned: [Pg.355]    [Pg.1080]    [Pg.34]    [Pg.123]    [Pg.107]    [Pg.777]    [Pg.125]    [Pg.33]    [Pg.177]    [Pg.179]    [Pg.259]    [Pg.107]    [Pg.99]    [Pg.320]    [Pg.66]    [Pg.29]    [Pg.1265]    [Pg.328]    [Pg.385]    [Pg.227]    [Pg.32]    [Pg.381]    [Pg.439]    [Pg.52]    [Pg.77]    [Pg.280]    [Pg.193]    [Pg.127]    [Pg.214]    [Pg.12]    [Pg.96]    [Pg.1636]    [Pg.745]   
See also in sourсe #XX -- [ Pg.916 , Pg.917 ]




SEARCH



Control testing

Control tests

Quality control protocol

Quality control testing

Quality protocols

Quality testing

Test protocols

Testing protocols

© 2024 chempedia.info