Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tantalum oxidation-reduction reactions

Another example is the siliciditing of tantalum, basically an oxidation— reduction reaction. The packing is sodium duoride and siUcon. After deposition, the coating diffuses continuously into the substrate, according to the following reactions ... [Pg.47]

The reaction is carried out under an inert atmosphere in an open crucible at approximately 830°C. Figure 1 shows typical equipment used for direct oxide reduction. Vitrified magnesium oxide ceramic is commonly used as a container material, but tungsten and tantalum can also be used(3). If the latter are used, CaF2 is added to lower the temperature needed to liquify... [Pg.379]

Praseodymium tri-iodide, Prl3, as the starting material for reduction reactions, might be easily produced by the oxidation of praseodymium metal with elemental iodine [17]. With catalytic amounts of hydrogen dissolved in praseodymium metal powder, the reaction temperature can be as low as 230 °C [18]. Sublimation in high vacuum in tantalum tubes yields pure Prl3. [Pg.47]

Various options for the production of tantalum from pure tantalum compounds are summarized in Figure 4.26. The oxide and halide reduction reactions described above have been carried out in basically different types of reactors, using processes that are characteristically different because the forms and the physico-chemical nature of the feed materials are different. A relatively recent development with regard to process metallurgical equip-... [Pg.425]

From these observations it was concluded that the major products of the reduction of niobium(V) chloride with anhydrous pyridine were tetrachlorodi-(pyridine)niobium(IV) and l-(4-pyridyl)pyridinium dichloride. Oxidation-reduction titrations indicated that this reduction accounted for approximately 70% of the reaction products. In view of the rapid reaction of tantalum(V) halides with pyridine to form 1 to 1 adducts, it was assumed that the remaining 30% of niobium (V) which was not reduced was present in the reaction mixture as pentachloro(pyridine)niobium(V). On this basis the following over-all reaction is proposed ... [Pg.256]

Proposed Mechanisms for Reduction Reactions. Any mechanism proposed for the reduction of niobium(V) halides with pyridine must incorporate the necessary two-electron oxidation-reduction step required for the oxidation of pyridine to l-(4-pyridyl) pyridinium ion. In view of the known acid properties of the niobium(V) halides and the rapid reaction of the tantalum (V) halides to give 1 to 1 pyridine adducts, the mechanism must also include the initial coordination of pyridine to the niobium(V) halide. The reduction might then proceed through the steps shown opposite. [Pg.256]

White et al. studied electron transfer reactions at a tantalum surface covered by 2.5 nm of native tantalum-(V)-oxide (42). The SECM detected microscopic electroactive sites with a diameter between 4 and 100 /rm. Interestingly, some sites turned out to be active only for the reduction of Ru(NI lit, while others were also capable of oxidizing iodide. The authors studied the kinetics of mediator interaction under various sample potentials and locations in detail to determine parameters relevant for the growth of such tantalum oxide films. An example is given in Figure 17. [Pg.224]

Baturina OA, Garsany Y, Zega T, Stroud R, Schull E, Swider-Lyonsa KE (2008) Oxygen reduction reaction on platinum/tantalum oxide electrocatalysts for PEM fuel cells. J Electrochem Soc 155 B1314—B1321... [Pg.414]

Ishihara A, Tamura M, Ohgi Y, Matsumoto M, Matsuzawa K, Mitsushima S, Imai H, Ota K-1 (2013) Emergence of oxygen reduction activity in partially oxidized tantalum carbonitrides roles of deposited carbon for oxygen reduction-reaction-site creation and surface electron conduction. J Phys Chem C 117 18837-18844... [Pg.98]

The final step, vaporization of calcium, does not work for metals with high vapor pressure, as the metal itself would vaporize with the calcium. Instead the oxide is reduced with metallic lanthanum, which has a very low vapor pressure. Lanthanum oxide and a melt of the actual RE metal are formed. The reduction reaction occurs in a tantalum container. The reduced RE metals e.g. samarium, are vaporized and deposit on the walls of the tantalum container. This method is used for [boiling point (°C) in parenthesis] Sm (1794), Eu (1529), Tm (1950), Yb (1196). [Pg.476]

TaCl593 reacted with metallic sodium in neat trimethylphosphine to give the phosphinocarbene tantalum complexes 100 and 101, respectively. These reactions are the first examples of double activation of coordinated trimethylphosphine via oxidative cleavage of a substituent methyl C-H bond. A similar process was also observed in the reduction of tantalum pentabrom-ide with magnesium turnings in the presence of dimethylphenylphosphine.94... [Pg.212]

Several studies have been concerned with the chemistry of the + ni oxidation state of these elements, and the characterization of the first tantalum(iii) compounds has been claimed. The diamagnetic dimer [TaCl3(MeCN)2]2 has been prepared and used to obtain [TaClafphen)], [TaCljfbipy)], and tris-(dibenzoylmethanato)tantalum(ni). NbFa has been characterized as the product of the reaction of Nb and NbF (1 1) at 750 °C under pressure. Electrolytic reduction of niobium(v) in ethanol,formamide, and dimethylformamide can afford preparative concentrations of niobium(iii) and the new compound niobium(iii) trilactate has been obtained from ethanol. [Pg.59]

Alkane metathesis was first reported in 1997 [84]. Acyclic alkanes, with the exception of methane, in contact with a silica supported tantalum hydride ](=SiO)2TaH] were transformed into their lower and higher homologues (for instance, ethane was transformed into methane and propane). Later, the reverse reaction was also reported [85]. Taking into accountthe high electrophilic character ofa tantalum(III) species, two mechanistic hypotheses were then envisaged (i) successive oxidative addition/reductive elimination steps and (ii) o-bond metathesis. Further work has shown that aLkyhdene hydrides are critical intermediates, and that carbon-carbon... [Pg.431]

Niobium and tantalum halides form adducts with various nitrogen donor ligands including aliphatic and aromatic amines nitriles, Schiffs bases and imidazoles (Table 5). The reactions of MXS with pyridine and related ligands such as bipy or phen depend critically on the reaction conditions. With py at low temperature MX5 (X = Cl, Br) yielded 1 1 adducts that are rapidly reduced to [MX4(py)2] on increasing the temperature, with formation of l-(4-pyridyl)pyridinium halide. Similarly, bipy and phen reduced the metal in MeCN to oxidation state +IV and formed monoadducts of type [MX bipy)] at room temperature, while at 0°C the same reactions yielded [NbCls(bipy)(MeCN)] and [TaX5(bipy)(MeCN)J (X = C1 or Br). NbBrs and Tals formed [MX5(bipy)2], which were formulated as the eight-coordinate [MX4(bipy)2]X.1 Reduction of the metal can however be prevented, even at room temperature,... [Pg.596]

The first tantalum nitrene was obtained in 1959 by thermolysis of [Ta(NEt2)]5-288 This class of compounds is presently accessible by several routes, including hydrogen abstraction from the mono- or di-alkylamides, reaction of metallacarbenes with organic imines, oxidation of low valent species by organic azides, or reductive coupling of nitriles (Table 13). The tantalum derivatives are usually stabler than those of niobium. [Pg.613]

Di(carbene)gold(I) salts, oxidation, 2, 293—294 Dicarbido clusters, with decarutheniums, 6, 1036 Dicarbollide amides, with tantalum, 5, 184 Dicarbollide thorium complexes, synthesis and characterization, 4, 224—225 Dicarbollyl ligands, in nickel complexes, 8, 185 Dicarbonyl complexes arylation with lead triacetates diastereoselectivity, 9, 389 enantioselectivity, 9, 391 mechanisms, 9, 387 reaction examples, 9, 382 indium-mediated allylation, 9, 675 with iridium, 7, 287 reductive cyclization, 10, 529 in Ru and Os half-sandwiches, 6, 508 with Zr—Hf(II), 4, 700... [Pg.94]

Niobium and tantalum halides also fonn adducts with numerous N-donors. Their reactions with pyridine and related ligands (bipyridine, phenanthroline, 7-azaindole ) depend critically on the reaction conditions. Indeed, aromatic amines have a tendency to reduce the metal to oxidation state IV especially for niobium but the reduction can be prevented, even at rt, by an appropriate choice of the solvent (equations 2a-c). Imide adducts M(NR)Cl3L2 are obtained with primary or secondary amines. ... [Pg.2933]

The phosphorus resonances of the compounds [RPTa(XR )j] in Fig. 7.33 surprise us somewhat, as we would expect the tantalum in these complexes to be in the oxidation state +V rather than +III. The synthesis can be imagined as being between CljTaCXR j and Li PR, and thus between Ta(V) and P(-I). We would expect that given the electronegativities of both phosphorus and tantalum, no intramolecular redox reaction would occur, as that would involve oxidation of phosphorus and reduction of the metal, and therefore the exact opposite to the situation encountered in P(III)/Fe(-II) above. [Pg.111]


See other pages where Tantalum oxidation-reduction reactions is mentioned: [Pg.137]    [Pg.395]    [Pg.424]    [Pg.2937]    [Pg.275]    [Pg.173]    [Pg.2936]    [Pg.1551]    [Pg.668]    [Pg.57]    [Pg.203]    [Pg.365]    [Pg.455]    [Pg.610]    [Pg.615]    [Pg.8]    [Pg.114]    [Pg.2930]    [Pg.2957]    [Pg.594]    [Pg.2929]    [Pg.2956]    [Pg.2435]    [Pg.2449]    [Pg.2454]    [Pg.74]    [Pg.2435]    [Pg.320]   
See also in sourсe #XX -- [ Pg.426 , Pg.427 ]




SEARCH



Reaction oxidation-reduction

Tantalum oxidation

Tantalum oxides

Tantalum oxidized

© 2024 chempedia.info