Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Coordination initiator

From the results discussed so far, it is evident that only CH2 groups have been observed in the very early stages of the ethylene polymerization reaction. Of course, this could be due to formation of metallacycles, but can be also a consequence of the high TOP which makes the observation of the first species troublesome. To better focalize the problem it is useful to present a concise review of the models proposed in the literature for ethylene coordination, initiation, and propagation reactions. [Pg.24]

Main group organometallic polymerization catalysts, particularly of groups 1 and 2, generally operate via anionic mechanisms, but the similarities with truly coordinative initiators justify their inclusion here. Both anionic and coordinative polymerization mechanisms are believed to involve enolate active sites, (Scheme 6), with the propagation step akin to a 1,4-Michael addition reaction. [Pg.23]

This method exclusively yields macrocyclic polyesters without any competition with linear polymers. Furthermore, the coordination-insertion ROP process can take part in a more global construction set, ultimately leading to the development of new polymeric materials with versatile and original properties. Note that other types of efficient coordination initiators, i.e., rare earth and yttrium alkoxides, are more and more studied in the framework of the controlled ROP of lactones and (di)lactones [126-129]. These polymerizations are usually characterized by very fast kinetics so as one can expect to (co)polymerize monomers known for their poor reactivity with more conventional systems. Those initiators should extend the control that chemists have already got over the structure of aliphatic polyesters and should therefore allow us to reach again new molecular architectures. It is also important to insist on the very promising enzyme-catalyzed ROP of (di)lactones which will more likely pave the way to a new kind of macromolecular control [6,130-132]. [Pg.56]

Propagation with the anionic coordination initiators, especially the aluminum and zinc initiators such as aluminum isopropoxide or the metalloprophyrins such as VI, involves covalent propagation in which the epoxide monomer is inserted into a metal-oxygen bond [Penczek and Duda, 1993 Penczek et al., 1995 Szwarc and Van Beylen, 1993] (Eq. 7-9). The propagation is categorized as an anionic coordination process since one can visualize... [Pg.549]

Excluding polymerizations with anionic coordination initiators, the polymer molecular weights are low for anionic polymerizations of propylene oxide (<6000) [Clinton and Matlock, 1986 Boileau, 1989 Gagnon, 1986 Ishii and Sakai, 1969 Sepulchre et al., 1979]. Polymerization is severely limited by chain transfer to monomer. This involves proton abstraction from the methyl group attached to the epoxide ring followed by rapid ring cleavage to form the allyl alkoxide anion VII, which isomerizes partially to the enolate anion VIII. Species VII and VIII reinitiate polymerization of propylene oxide as evidenced... [Pg.553]

Chain transfer to monomer is much less prevalent for polymerizations with most of the anionic coordination initiators and higher polymer molecular weights have heen obtained [Bots et al., 1987]. [Pg.554]

A variety of anionic initiators, both ionic and covalent, have been used to polymerize lactones [Duda and Penczek, 2001 Jedlinski, 2002 Jerome and Teyssie, 1989 Penczek and Duda, 1993]. Much of the more recent activity involves the use of anionic covalent (coordination) initiators such as alkylmetal alkoxides and metal alkoxides such as R2A OR and Al(OR)3, metal carboxylates such as tin(II) 2-ethylhexanoate, metalloporpyrins (VI), and aluminox-anes such as oligomeric [A1(CH3)0] [Biela et al., 2002 Duda et al., 1990 Endo et al., 1987a,b Gross et al., 1988 Kricheldorf et al., 1990 Penczek et al., 2000a,b Sugimotoa and Inoue, 1999]. [Pg.581]

For coordination initiators, the metal coordinates with the carhonyl oxygen followed hy insertion of an alkoxy (or other anionic fragment depending on the initiator) into the acyl-oxygen bond. [Pg.582]

Cycloalkenes undergo ring-opening polymerization in the presence of coordination initiators based on transition metals to yield polymers containing a double bond, for instance, cyclo-pentene yields polypentenamer [IUPAC poly(pent-l-ene-l,5-diyl)] [Amass, 1989 Cazalis et al., 2000, 2002a,b Claverie and Soula, 2003 Doherty et al., 1986 Ivin, 1984, 1987 Ivin and Mol, 1997 Ofstead, 1988 Schrock, 1990, 1994 Tmka and Gmbbs, 2001], The... [Pg.589]

Coordination initiators perform two functions. First, they supply the species that initiates the polymerization. Second, the fragment of the initiator aside from the initiating portion has unique coordinating powers. Coordination of this fragment (which may be considered as... [Pg.641]

Bis(phosphino)pyridines are typically P,P-coordinated initially as in 374. However, subsequently, they form various bridges in which pyridine heteroatoms may be fully involved as in 375-377, partially involved in 378, or not involved in 379 as polynuclear complexes. [Pg.458]

Coordinative initiation differs from ionic polymerization in that the propagating species consists of a covalent bond species. This generally reduces the reactivity and the polymerization rate. Decreased reactivity also leads to fewer amounts of side reactions and the often-living ROP of lactones may take place under these conditions. Chedron, in the early 1960s, showed that some Lewis acids, such as triethylaluminum and water or ethanolate of diethylaluminum, were effective initiators for lactone polymerizations. Tin(IV) alkoxides and phenox-ides, [92,93] aluminum alkoxides, mainly aluminum / so-propoxide, and soluble... [Pg.16]

A large variety of organometallic compounds, e.g., metal alkoxides and metal carboxylates, has been studied as initiators or catalysts in order to achieve effective polymer synthesis [35]. Many reactions catalyzed by metal complexes are highly specific and, by careful selection of metal and ligands, reactions can be generated to form a desired polymer structure [36, 37]. The covalent metal alkoxides with freep or d orbitals react as coordination initiators and not as anionic or cationic inititors [38]. Fig. 1 summarizes some of the most frequently used initiators and catalysts. [Pg.46]

The most efficient way of preparing polylactides is ROP by coordination initiators [132]. This method usually allows a controlled synthesis leading to quite a narrow MWD. Polymerization of the different stereoforms results in materials with different properties. The polymers derived from the pure L-FA or D-FA... [Pg.59]

A final example of a stereoselective heterogeneous catalytic system is the work of Laycock, Collacott, Skelton and Tchir.17 Layered double hydroxide (LDH) synthetic hydrotalcite materials were used to stereospecifically polymerize propylene oxide [PO] to crystalline isotactic and liquid atactic poly(propyleneoxide) [PPO]. These authors suggest that the LDH surface acts as other inorganic or organometallic coordination initiators or catalysts by providing specific surface orientations for propylene oxide monomer. X-ray powder diffraction showed some loss of crystallinity after calcination and X-ray photoelectron spectroscopy showed an enhancement of Mg/Al content due to restructuring of the Mg and A1 surface atoms. The surface was also rich in Cl ... [Pg.11]

Compared with 49, 2,5-dioxabicyclo[2.2.2]octan-3-one (54) prepared from sodium 3,4-dihydro-2//-pyran-2-carboxylate has a much low polymerization reactivity [54] Lewis acids such as antimony pentachloride, phosphorus pentafluoride, and boron trifluoride etherate were not effective at all to initiate the polymerization of 54. Trifluoromethanesulfonic acid induced the polymerization of 54, but the yield and molecular weight of the polymer were low. Bicyclic lactone 54 was allowed to polymerize with anionic and coordination initiators such as butyl-lithium, lithiumbenzophenone ketyl, and tetraisopropyl titanate. However, the... [Pg.22]

If initiation is faster or comparable to propagation and termination is negligible, kinetic plots are straight in semilogarithmic coordinates. Initiation is faster than propagation and not kinetically detectable in polymerizations of isobutene and styrene initiated by cumyl derivatives because the initiator is more easily ionized than the propagating species. However, if the initiator is less easily ionized than the propagating species as in a-methyl-styrene polymerizations initiated by cumyl derivatives, and in isobutene polymerizations initiated by /-butyl derivatives (cf., also Section III. A.5), then initiation may be incomplete and the overall polymerization rate will increase continuously. [Pg.182]

Having defined the atomic coordinates, initial velocities must next be assigned. The atomic velocity components may be chosen randomly from either a Gaussian distribution at the desired temperature or from a uniform distribution in the interval fmax)> where can be chosen to be equal to the... [Pg.175]


See other pages where Coordination initiator is mentioned: [Pg.77]    [Pg.24]    [Pg.18]    [Pg.291]    [Pg.200]    [Pg.552]    [Pg.641]    [Pg.642]    [Pg.155]    [Pg.1058]    [Pg.374]    [Pg.403]    [Pg.342]    [Pg.285]    [Pg.33]    [Pg.259]    [Pg.723]    [Pg.2109]    [Pg.585]    [Pg.690]    [Pg.546]   
See also in sourсe #XX -- [ Pg.640 ]

See also in sourсe #XX -- [ Pg.640 ]




SEARCH



Cationic coordination polymerization initiation

Chain copolymerization coordination initiator

Coordinate initiation

Coordinate initiation

Coordination initiator polymerization

Initiators coordinate

Initiators coordinate

School Coordinator Initiative

© 2024 chempedia.info