Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Preheating system

2 System Preheating. - The thermal efficiency of a catalytic oxidation system may be enhanced by preheating the feed gas in air prior to catalytic combustion. Tichenor and Palazzolo [5] have determined the relative contribution of the pre-heater to the overall efficiency. A mixture of iso-propanol, methyl ethyl ketone, ethyl acetate, benzene and n-hexane was combusted at a space velocity of 50,000h in the temperature range 300-450°C over a bi-metallic Pt-Pd catalyst supported on a ceramic monolith. The results are shown in figure 1. [Pg.107]


In continuous systems, preheated crude oil (80°C) and water are metered into an in-dwell pipeline agitator, or a large agitated tank, and held only for a short period. In both systems, the oil is then pumped to a centrifuge for separation of the lecithin sludge from the oil (33, 118, 125-126). Water with a low concentration of calcium and magnesium is preferred (115). [Pg.1745]

A variation on bar sealing uses only one heated bar, with the other bar not heated, resulting in heat conduction occurring only in one direction. Another variation uses heated rollers instead of bars, with the materials sealed as they pass between the rollers. In this type of system, preheating, slow travel through the rollers, or both, are generally required due to the very short contact time between the rollers. A third variation uses shaped upper bars for sealing lids on cups and trays. [Pg.203]

Optimising operation of waste heat recovery units, refrigeration systems, preheaters for air and water, cooling tower fan, compressed air systems, etc. [Pg.200]

A distillation process uses a complex arrangement of systems that includes a cooling-tower system, pump-and-feed system, preheat system, product storage system, compressed-air system, steam-generation system, and complex instrument control system. (See Figure 10-3.) Each of these stand-alone systems is designed to support a specific part of the distillation process. Each... [Pg.228]

In the expression for heating value, it is useful to define the physical state of the motor fuel for conventional motor fuels such as gasoline, diesei fuel, and jet fuels, the liquid state is chosen most often as the reference. Nevertheless, if the material is already in its vapor state before entering the combustion system because of mechanical action like atomization or thermal effects such as preheating by exhaust gases, an increase of usefui energy resufts that is not previously taken into consideration. [Pg.184]

Fig. 38. Caustic purification system a, 50% caustic feed tank b, 50% caustic feed pumps c, caustic feed preheater d, amonia feed pumps e, ammonia feed preheater f, extractor g, trim heater h, ammonia subcooler i, stripper condenser j, anhydrous ammonia storage tank k, primary flash tank 1, evaporator reboiler m, evaporator n, caustic product transfer pumps o, purified caustic product cooler p, purified caustic storage tank q, ammonia stripper r, purified caustic transfer pumps t, overheads condenser u, evaporator v, evaporator vacuum pump w, aqueous storage ammonia tank x, ammonia scmbber y, scmbber condenser 2, ammonia recirculating pump aa, ammonia recycle pump. CW stands for chilled water. Fig. 38. Caustic purification system a, 50% caustic feed tank b, 50% caustic feed pumps c, caustic feed preheater d, amonia feed pumps e, ammonia feed preheater f, extractor g, trim heater h, ammonia subcooler i, stripper condenser j, anhydrous ammonia storage tank k, primary flash tank 1, evaporator reboiler m, evaporator n, caustic product transfer pumps o, purified caustic product cooler p, purified caustic storage tank q, ammonia stripper r, purified caustic transfer pumps t, overheads condenser u, evaporator v, evaporator vacuum pump w, aqueous storage ammonia tank x, ammonia scmbber y, scmbber condenser 2, ammonia recirculating pump aa, ammonia recycle pump. CW stands for chilled water.
In early reaction systems (9,10,31,32) the vaporized hydrocarbon was combined with nitrogen in a reactor and mixed with a nitrogen—fluorine mixture from a preheated source. The jet reactor (11) for low molecular weight fluorocarbons was an important improvement. The process takes place at around 200—300°C, and fluorination is carried out in the vapor state. [Pg.276]

The reactor effluent, containing 1—2% hydrazine, ammonia, sodium chloride, and water, is preheated and sent to the ammonia recovery system, which consists of two columns. In the first column, ammonia goes overhead under pressure and recycles to the anhydrous ammonia storage tank. In the second column, some water and final traces of ammonia are removed overhead. The bottoms from this column, consisting of water, sodium chloride, and hydrazine, are sent to an evaporating crystallizer where sodium chloride (and the slight excess of sodium hydroxide) is removed from the system as a soHd. Vapors from the crystallizer flow to the hydrate column where water is removed overhead. The bottom stream from this column is close to the hydrazine—water azeotrope composition. Standard materials of constmction may be used for handling chlorine, caustic, and sodium hypochlorite. For all surfaces in contact with hydrazine, however, the preferred material of constmction is 304 L stainless steel. [Pg.282]

Burners and combustion air ports are located in the walls of the furnace to introduce either heat or air where needed. The air path is countercurrent to the sohds, flowing up from the bottom and across each hearth. The top hearth operates at 310—540°C and dries the feed material. The middle hearths, at 760—980°C, provide the combustion of the waste, whereas the bottom hearth cools the ash and preheats the air. If the gas leaving the top hearth is odorous or detrimental to the environment, afterburning is required. The moving parts in such a system are exposed to high temperatures. The hoUow central shaft is cooled by passing combustion air through it. [Pg.46]

The basic fluid-bed unit consists of a refractory-lined vessel, a perforated plate that supports a bed of granular material and distributes air, a section above the fluid bed referred to as freeboard, an air blower to move air through the unit, a cyclone to remove all but the smallest particulates and return them to the fluid bed, an air preheater for thermal economy, an auxiUary heater for start-up, and a system to move and distribute the feed in the bed. Air is distributed across the cross section of the bed by a distributor to fluidize the granular soflds. Over a proper range of airflow velocities, usually 0.8-3.0 m/s, the sohds become suspended in the air and move freely through the bed. [Pg.46]

The iron carbide process is alow temperature, gas-based, fluidized-bed process. Sized iron oxide fines (0.1—1.0 mm) are preheated in cyclones or a rotary kiln to 500°C and reduced to iron carbide in a single-stage, fluidized-bed reactor system at about 590°C in a process gas consisting primarily of methane, hydrogen, and some carbon monoxide. Reduction time is up to 18 hours owing to the low reduction temperature and slow rate of carburization. The product has the consistency of sand, is very britde, and contains approximately 6% carbon, mostly in the form of Ee C. [Pg.431]

Helping to propel capacities upward has been the advent of greatly improved preheaters, which partially calcine the stone and significantly improve thermal efficiency. Modem preheaters improve capacity by 15—20% and decrease fuel consumption a similar percentage. Other kiln appurtenances and accessories that enhance efficiency and lime quahty are the contact coolers, and such kiln internals as metal refractory trefoil systems that act as heat exchangers, dams, and lifters. [Pg.171]

Fig. 5. Schematic of the Kennedy van Saun (KVS) patented low pressure drop (LPD) preheater/rotary kiln lime calcining system available in sites... Fig. 5. Schematic of the Kennedy van Saun (KVS) patented low pressure drop (LPD) preheater/rotary kiln lime calcining system available in sites...
Chemical Regeneration. In most MHD system designs the gas exiting the toppiag cycle exhausts either iato a radiant boiler and is used to raise steam, or it exhausts iato a direct-fired air heater and is used to preheat the primary combustion air. An alternative use of the exhaust gas is for chemical regeneration, ia which the exhaust gases are used to process the fuel from its as-received form iato a more beaeftcial oae. Chemical regeaeratioa has beea proposed for use with aatural gas and oil as well as with coal (14) (see Gas, natural Petroleum). [Pg.412]

The oxidant preheater, positioned in the convective section and designed to preheat the oxygen-enriched air for the MHD combustor to 922 K, is located after the finishing superheat and reheat sections. Seed is removed from the stack gas by electrostatic precipitation before the gas is emitted to the atmosphere. The recovered seed is recycled by use of the formate process. Alkali carbonates ate separated from potassium sulfate before conversion of potassium sulfate to potassium formate. Sodium carbonate and potassium carbonate are further separated to avoid buildup of sodium in the system by recycling of seed. The slag and fly-ash removed from the HRSR system is assumed to contain 15—17% of potassium as K2O, dissolved in ash and not recoverable. [Pg.425]

Air preheat temperature requirements of 2250—2300 K are anticipated for natural gas-fired systems, and about 2000 K for oil or coal-fired systems (11). Use of 32—40% oxygen enrichment lowers the preheat temperature requirement to a moderate 900—1000 K, which can be attained with conventional metal-type tubular heat exchangers. Depending on the cost of oxygen, this is a viable alternative to the use of separately fired high temperature preheaters. [Pg.426]

For gas-fired systems the state-of-the-art is represented by the preheater described in Reference 69. A pebble bed instead of a cored brick matrix is used. The pebbles are made of alumina spheres, 20 mm in diameter. Heat-transfer coefficients 3—4 times greater than for checkerwork matrices are achieved. A prototype device 400 m in volume has been operated for three years at an industrial blast furnace, achieving preheat temperatures of 1670 to 1770 K. [Pg.427]

Alcohol Amination. There are many similarities in the process technologies for Methods 1 and 2. In both, an alcohol reacts with ammonia over a fixed catalyst bed at elevated temperature. The reaction section consists of feed systems, vapori2ers, and/or preheaters which pass a Hquid or gaseous feed mixture over the catalyst bed in the desired ratio, temperature, and pressure. Possible amination catalysts for each method are as foUows. [Pg.199]

A Hquid-phase variation of the direct hydration was developed by Tokuyama Soda (78). The disadvantages of the gas-phase processes are largely avoided by employing a weakly acidic aqueous catalyst solution of a siHcotungstate (82). Preheated propylene, water, and recycled aqueous catalyst solution are pressurized and fed into a reaction chamber where they react in the Hquid state at 270°C and 20.3 MPa (200 atm) and form aqueous isopropyl alcohol. Propylene conversions of 60—70% per pass are obtained, and selectivity to isopropyl alcohol is 98—99 mol % of converted propylene. The catalyst is recycled and requites Htde replenishment compared to other processes. Corrosion and environmental problems are also minimized because the catalyst is a weak acid and because the system is completely closed. On account of the low gas recycle ratio, regular commercial propylene of 95% purity can be used as feedstock. [Pg.109]

Economy of time and resources dictate using the smallest sized faciHty possible to assure that projected larger scale performance is within tolerable levels of risk and uncertainty. Minimum sizes of such laboratory and pilot units often are set by operabiHty factors not directly involving internal reactor features. These include feed and product transfer line diameters, inventory control in feed and product separation systems, and preheat and temperature maintenance requirements. Most of these extraneous factors favor large units. Large industrial plants can be operated with high service factors for years, whereas it is not unusual for pilot units to operate at sustained conditions for only days or even hours. [Pg.519]

Acid cleaners based on sulfamic acid are used in a large variety of appHcations, eg, air-conditioning systems marine equipment, including salt water stills wells (water, oil, and gas) household equipment, eg, copper-ware, steam irons, humidifiers, dishwashers, toilet bowls, and brick and other masonry tartar removal of false teeth (50) dairy equipment, eg, pasteurizers, evaporators, preheaters, and storage tanks industrial boilers, condensers, heat exchangers, and preheaters food-processing equipment brewery equipment (see Beer) sugar evaporators and paper-mill equipment (see also Evaporation Metal surface treati nts Pulp). [Pg.64]


See other pages where Preheating system is mentioned: [Pg.40]    [Pg.446]    [Pg.157]    [Pg.244]    [Pg.462]    [Pg.1116]    [Pg.40]    [Pg.446]    [Pg.157]    [Pg.244]    [Pg.462]    [Pg.1116]    [Pg.361]    [Pg.23]    [Pg.420]    [Pg.171]    [Pg.172]    [Pg.412]    [Pg.413]    [Pg.424]    [Pg.424]    [Pg.427]    [Pg.427]    [Pg.353]    [Pg.348]    [Pg.350]    [Pg.355]    [Pg.352]    [Pg.421]    [Pg.8]    [Pg.273]    [Pg.519]    [Pg.367]    [Pg.478]   


SEARCH



Air Preheating Systems

Combustion air preheating systems

Preheat

Preheat systems

Preheat systems

Preheated

Preheater

Preheater-reactor system

Preheating

© 2024 chempedia.info