Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Synthetic Condensation Polymers

Reactions of the Methyl Groups. These reactions include oxidation, polycondensation, and ammoxidation. PX can be oxidized to both terephthahc acid and dimethyl terephthalate, which ate then condensed with ethylene glycol to form polyesters. Oxidation of OX yields phthaUc anhydride, which is used in the production of esters. These ate used as plasticizers for synthetic polymers. MX is oxidized to isophthaUc acid, which is also converted to esters and eventually used in plasticizers and resins (see Phthalic acids and otherbenzenepolycarboxylic acids). [Pg.413]

Biopolymers are the naturally occurring macromolecular materials that are the components of all living systems. There are three principal categories of biopolymers, each of which is the topic of a separate article in the Eniyclopedia proteins (qv) nucleic acids (qv) and polysaccharides (see Carbohydrates Microbial polysaccharides). Biopolymers are formed through condensation of monomeric units ie, the corresponding monomers are amino acids (qv), nucleotides, and monosaccharides, for proteins, nucleic acids, and polysaccharides, respectively. The term biopolymers is also used to describe synthetic polymers prepared from the same or similar monomer units as are the natural molecules. [Pg.94]

The third approaeh to synthetic polymers is of somewhat less commereial importance. There is in fact no universally accepted deseription for the route but the terms rearrangement polymerisation and polyaddition are commonly used. In many respects this process is intermediate between addition and condensation polymerisations. As with the former teehnique there is no moleeule split out but the kinetics are akin to the latter. A typical example is the preparation of polyurethanes by interaction of diols (di-alcohols, glycols) with di-isocyanates Figure 2.7). [Pg.22]

There are two great families of synthetic polymers, those made by addition methods (notably, polyethylene and other polyolefines), in which successive monomers simply become attached to a long chain, and those made by condensation reactions (polyesters, polyamides, etc.) in which a monomer becomes attached to the end of a chain with the generation of a small by-product molecule, such as water. The first sustained programme of research directed specifically to finding new synthetic macromolecules involved mostly condensation reactions and was master-... [Pg.38]

Synthetic resins form the heart of the paint industry. The tw o main types of synthetic resins are condensation polymers and addition polymers. Condensation polymers, formed by condensation of like or unlike molecules into a new, more complex compound, include polyesters, phenolics.. iniino resins, polyurethane, and epoxies. Addition polymers include polyvinyl acetate, polyvinyl chloride, and the acrylates,... [Pg.285]

Two general reactions form synthetic polymers chain addition and condensation. [Pg.303]

We start with synthetic organic polymers. Since about 1930, a variety of synthetic polymers have been made available by the chemical industry. The monomer units are joined together either by addition (Section 23.1) or by condensation (Section 23.2). They are used to make cups, plates, fabrics, automobile tires, and even artificial hearts. [Pg.611]

Condensation polymers, which are also known as step growth polymers, are historically the oldest class of common synthetic polymers. Although superseded in terms of gross output by addition polymers, condensation polymers are still commonly used in a wide variety of applications examples include polyamides (nylons), polycarbonates, polyurethanes, and epoxy adhesives. Figure 1.9 outlines the basic reaction scheme for condensation polymerization. One or more different monomers can be incorporated into a condensation polymer. [Pg.25]

Synthetic polymers are extremely useful and valuable. Many polymers and their manufacturing processes have been patented as corporate technology. Polymers form by two of the reactions you have already learned addition reactions and condensation reactions. [Pg.82]

There are two main chemical mechanisms by which a synthetic polymer may be produced namely by either a condensation (step growth) polymerisation or addition (chain) polymerisation. [Pg.157]

Nearly all synthetic polymers are synthesized by the polymerization or copolymerization of different "monomers." The chain growth process may involve the addition chain reactions of unsaturated small molecules, condensation reactions, or ringopening chain-coupling processes. In conventional polymer chemistry, the synthesis of a new polymer requires the use of a new monomer. This approach is often unsatisfactory for Inorganic systems, where relatively few monomers or cyclic oligomers can be Induced to polymerize, at least under conditions that have been studied to date. The main exception to this rule is the condensation-type growth that occurs with inorganic dl-hydroxy acids. [Pg.50]

Phenol - formaldehyde polymers are the oldest synthetic polymers. These are obtained by the condensation reaction of phenol with formaldehyde in the presence of either an acid or a base catalyst. The reaction starts with the initial formation of o-and/or p-hydroxymethylphenol derivatives, which further react with phenol to form compounds having rings joined to each other through -CH2 groups. The initial product could be a linear product - Novolac used in paints. [Pg.141]

While condensation polymers account for only a modest fraction of all synthetic polymers, most natural polymers are of the condensation type. The first all-synthetic polymer, Bakelite, was produced by the stepwise polycondensation of phenol and formaldehyde. [Pg.88]

Many naturally occurring and some synthetic polymers are produced by condensation reactions, many of which are described kinetically by the term stepwise polymerization. A high fractional conversion is required to form linear polymers such as polyesters, nylons. [Pg.130]

Chen (29) found that the amount of sulfuric acid directly determines the hardening time in the acid condensation of spent sulfite liquors used in plywood and veneers. However, in general the adhesives based purely on acid condensed lignins have often been found to be an uneconomic and qualitatively inferior alternative to adhesives based on synthetic polymers and phenol or lignin-formaldehyde resins. [Pg.202]

We begin by exploring the two major types of synthetic polymers used today—addition polymers and condensation polymers. This provides a good background for the discussion of plastics in Chapter 18. [Pg.411]

As shown in Table 12.5, addition and condensation polymers have a wide variety of uses. Solely the product of human design, these polymers pervade modern living. In the United States, for example, synthetic polymers have surpassed steel as the most widely used material. [Pg.413]

A high molecular weight organic compound, natural or synthetic, whose structure can be represented by a repeated small unit, the monomer (e.g., polyethylene, isoprene and cellulose). Synthetic polymers are formed by the addition or condensation polymerization of monomers. If two or more different monomers are involved, a copolymer is obtained. Some polymers can be rubbers and some can be plastics. Plastics which are also high polymers can include both natural, or synthetic products but exclude rubber whether natural or synthetic. At some stage in its manufacture every plastic is capable of flowing under heat and pressure into the desired final shape. [Pg.3]

One of the oldest known thermosetting synthetic polymers is made by condensation of phenols with aldehydes using basic catalysts. The resins that are formed are known as Bakelites. The initial stage is the base-induced reaction of benzenol and methanal to give a (4-hydroxyphenyl)methanol, and this reaction closely resembles an aldol addition and can take place at either the 2-or the 4-position of the benzene ring ... [Pg.1442]

The synthesis of optically active polymers is an important area in macromolecular science, as they have a wide variety of potential applications, including the preparation of CSPs [31-37]. Many of the optically active polymers with or without binding to silica gel were used as CSPs and commercialized [38]. These synthetic polymers are classified into three groups according to the methods of polymerization (1) addition polymers, including vinyl, aldehyde, isocyanide, and acetylene polymers, (2) condensation polymers consisting of polyamides and polyurethanes, and (3) cross-linked gels (template polymerization). The art of the chiral resolution on these polymer-based CSPs is described herein. [Pg.327]

Cationic polymer is also frequently examined to increase the potential of a gene drug. Large molecular weight cationic polymers can condense pDNA more efficiently than cationic liposomes. They include poly-L-lysine (PLL), poly-L-omithine, polyethyleneimine (PEI), chitosan, starburst dendrimer and various novel synthetic polymers. These polymers can enhance the cellular uptake of pDNA by nonspecific adsorptive endocytosis. [Pg.382]

Polymers are large molecules (macromolecules) that consist of one or two small molecules (monomers) joined to each other in long, often highly branched, chains in a process called polymerization. Both natural and synthetic polymers exist. Some examples of natural polymers are starch, cellulose, chitin (the material of which shells are made), nucleic acids, and proteins. Synthetic polymers, the subject of this chapter, include polyethylene, polypropylene, polystyrene, polyesters, polycarbonates, and polyurethanes. In their raw, unprocessed form, synthetic polymers are sometimes referred to as resins. Polymers are formed in two general ways by addition or by condensation. [Pg.151]

Most condensation polymers fall into one of four major categories the polyamides, polycarbonates, polyesters, and polyurethanes. One of the first and eventually most popular synthetic polymers to be synthesized was a polyamide called nylon 66, discovered in 1935 by the American chemist Wallace Carothers (1896-1937). Nylon 66 is made in the reaction between adipic acid (hexanedioic acid, HOOC(CH2)4COOH) and hexamethylenediamine (NH2(CH2)6NH2). The equation for that reaction is as follows ... [Pg.155]

We focus our attention in this experiment on synthetic polymers and the basic mechanism by which some of them are formed. The two most important types of reactions that are employed in polymer manufacturing are the addition and condensation polymerization reactions. The first is represented by the polymerization of styrene and the second by the formation of nylon. [Pg.359]


See other pages where Synthetic Condensation Polymers is mentioned: [Pg.788]    [Pg.788]    [Pg.1140]    [Pg.301]    [Pg.444]    [Pg.172]    [Pg.102]    [Pg.189]    [Pg.472]    [Pg.450]    [Pg.501]    [Pg.221]    [Pg.148]    [Pg.777]    [Pg.74]    [Pg.147]    [Pg.152]    [Pg.615]    [Pg.10]    [Pg.220]    [Pg.1]    [Pg.677]    [Pg.517]    [Pg.33]   
See also in sourсe #XX -- [ Pg.1278 , Pg.1279 , Pg.1280 ]




SEARCH



Condensation polymers

Polymer Synthetic polymers

Polymer condensation polymers

Synthetic polymers

© 2024 chempedia.info