Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Colloids defined

For tire purjDoses of tliis review, a nanocrystal is defined as a crystalline solid, witli feature sizes less tlian 50 nm, recovered as a purified powder from a chemical syntliesis and subsequently dissolved as isolated particles in an appropriate solvent. In many ways, tliis definition shares many features witli tliat of colloids , defined broadly as a particle tliat has some linear dimension between 1 and 1000 nm [1] tire study of nanocrystals may be drought of as a new kind of colloid science [2]. Much of die early work on colloidal metal and semiconductor particles stemmed from die photophysics and applications to electrochemistry. (See, for example, die excellent review by Henglein [3].) However, the definition of a colloid does not include any specification of die internal stmcture of die particle. Therein lies die cmcial distinction in nanocrystals, die interior crystalline stmcture is of overwhelming importance. Nanocrystals must tmly be little solids (figure C2.17.1), widi internal stmctures equivalent (or nearly equivalent) to drat of bulk materials. This is a necessary condition if size-dependent studies of nanometre-sized objects are to offer any insight into die behaviour of bulk solids. [Pg.2899]

Sedimentation FFF, applied in the above manner, yields highly detailed size distribution curves. It is convenient and accurate. Importantly, sedimentation FFF is a highly flexible technique. It can be adapted to nearly all particle types in virtually any suspending medium. It yields particle density as well as size and size distribution. Our recent work has shown that it can be used to probe both size and density distributions in complex colloids, defined as systems having colloidal particles of variable chemical composition. Complex colloids are important in many biological and environmental studies. [Pg.216]

Due to the ubiquitous occurrence of humic substances and colloids (defined as entities of Inm-lpm size) in natural waters, their specific properties, in particular their scavenging capacities towards metallic cations and also their well-established mobility (1-6), these organic and inorganic species could have important effects on the fate and mobility of these cations in natural systems. On one hand, the formation of organic complexes or pseudocolloidal species will modify the speciation (distribution of chemical species) of the cation of interest and its solubility. On the other hand, they can retard cation migration... [Pg.259]

In practice, e.g., in nature or in fonnulated products, colloidal suspensions (also denoted sols or dispersions) tend to be complex systems, consisting of many components that are often not very well defined, in tenns of particle size for instance. Much progress has been made in the understanding of colloidal suspensions by studying well defined model systems, which allow for a quantitative modelling of their behaviour. Such systems will be discussed here. [Pg.2667]

An important step in tire progress of colloid science was tire development of monodisperse polymer latex suspensions in tire 1950s. These are prepared by emulsion polymerization, which is nowadays also carried out industrially on a large scale for many different polymers. Perhaps tire best-studied colloidal model system is tliat of polystyrene (PS) latex [9]. This is prepared with a hydrophilic group (such as sulphate) at tire end of each molecule. In water tliis produces well defined spheres witli a number of end groups at tire surface, which (partly) ionize to... [Pg.2669]

The major class of plate-like colloids is tliat of clay suspensions [21]. Many of tliese swell in water to give a stack of parallel, tliin sheets, stabilized by electrical charges. Natural clays tend to be quite polydisperse. The syntlietic clay laponite is comparatively well defined, consisting of discs of about 1 nm in tliickness and 25 nm in diameter. It has been used in a number of studies (e.g. [22]). [Pg.2670]

Anotlier standard metliod is to use a (high-speed) centrifuge to sediment tire colloids, replace tire supernatant and redisperse tire particles. Provided tire particles are well stabilized in tire solvent, tliis allows for a rigorous purification. Larger objects, such as particle aggregates, can be fractionated off because tliey settle first. A tliird metliod is (ultra)filtration, whereby larger impurities can be retained, particularly using membrane filters witli accurately defined pore sizes. [Pg.2670]

Even when well defined model systems are used, colloids are ratlier complex, when compared witli pure molecular compounds, for instance. As a result, one often has to resort to a wide range of characterization teclmiques to obtain a sufficiently comprehensive description of a sample being studied. This section lists some of tire most common teclmiques used for studying colloidal suspensions. Some of tliese teclmiques are discussed in detail elsewhere in tliis volume and will only be mentioned in passing. A few teclmiques tliat are relevant more specifically for colloids are introduced very briefly here, and a few advanced teclmiques are highlighted. [Pg.2671]

Because model colloids tend to have a ratlier well defined chemical composition, elemental analysis can be used to obtain detailed infonnation, such as tlie grafted amount of polymer in tire case of sterically stabilized particles. More details about tire chemical stmcture can be obtained using NMR techniques (section B1.13). In addition, NMR... [Pg.2672]

Colloidal dispersions often display non-Newtonian behaviour, where the proportionality in equation (02.6.2) does not hold. This is particularly important for concentrated dispersions, which tend to be used in practice. Equation (02.6.2) can be used to define an apparent viscosity, happ, at a given shear rate. If q pp decreases witli increasing shear rate, tire dispersion is called shear tliinning (pseudoplastic) if it increases, tliis is known as shear tliickening (dilatant). The latter behaviour is typical of concentrated suspensions. If a finite shear stress has to be applied before tire suspension begins to flow, tliis is known as tire yield stress. The apparent viscosity may also change as a function of time, upon application of a fixed shear rate, related to tire fonnation or breakup of particle networks. Thixotropic dispersions show a decrease in q, pp with time, whereas an increase witli time is called rheopexy. [Pg.2673]

A gel is defined as a hydrous metal aluminosihcate prepared from either aqueous solutions, reactive soflds, colloidal sols, or reactive aluminosihcates such as the residue stmcture of metakaolin and glasses. [Pg.451]

It would be incomplete for any discussion of soap crystal phase properties to ignore the colloidal aspects of soap and its impact. At room temperature, the soap—water phase diagram suggests that the soap crystals should be surrounded by an isotropic Hquid phase. The colloidal properties are defined by the size, geometry, and interconnectiviness of the soap crystals. Correlations between the coUoid stmcture of the soap bar and the performance of the product are somewhat quaUtative, as there is tittle hard data presented in the literature. However, it might be anticipated that smaller crystals would lead to a softer product. Furthermore, these smaller crystals might also be expected to dissolve more readily, leading to more lather. Translucent and transparent products rely on the formation of extremely small crystals to impart optical clarity. [Pg.153]

Many attempts have been made to characterize the stabiUty of the colloidal state of asphalt at ordinary temperature on the basis of chemical analysis in generic groups. For example, a colloidal instabiUty index has been defined as the ratio of the sum of the amounts in asphaltenes and flocculants (saturated oils) to the sum of the amounts in peptizers (resins) and solvents (aromatic oils) (66) ... [Pg.367]

Lest I leave the erroneous impression here that colloid science, in spite of the impossibility of defining it, is not a vigorous branch of research, I shall conclude by explaining that in the last few years, an entire subspeciality has sprung up around the topic of colloidal (pseudo-) crystals. These are regular arrays that are formed when a suspension (sol) of polymeric (e.g., latex) spheres around half a micrometre in diameter is allowed to settle out under gravity. The suspension can include spheres of one size only, or there may be two populations of different sizes, and the radius ratio as well as the quantity proportions of the two sizes are both controllable variables. Crystals such as AB2, AB4 and AB13 can form (Bartlett et al. 1992, Bartlett and van... [Pg.44]

Define a colloidal suspension and give some examples. [Pg.267]

There has been a conventional sense that the PVAc latexes prepared in the presence of PVA as a protective colloid contain the graft copolymer of PVA and PVAc, so that PVAc particles in the dried latex film are not extracted at a high ratio with solvents. In this Chapter, it has been defined without an influence by the usual sense that the porous PVA-PVAc composite can be prepared from the PVAc latex film with acetone extraction. The porous film consists of the spherical cells of PVA... [Pg.177]

There were essentially three reasons for this opposition. Firstly, many macromolecular compounds in solution behave as colloids. Hence they were assumed to be identical with the then known inorganic colloids. This in turn implied that they were not macromolecular at all, but were actually composed of small molecules bound together by ill-defined secondary forces. Such thinking led the German chemist C. D. Harries to pursue the search for the rubber molecule in the early years of the twentieth century. He used various mild degradations of natural rubber, which he believed would destroy the colloidal character of the material and yield its constituent molecules, which were assumed to be fairly small. He was, of course, unsuccessful. [Pg.3]

SO sharply defined that they are called surfaces. Well-defined surfaces occur between solids and either gases or liquids and thus are commonly found in catalytic and electrode reactions. More diffuse interfaces may occur between solids, as in microelectronic devices, and between fluids or semifluids, as in many polymeric and colloidal systems. [Pg.168]


See other pages where Colloids defined is mentioned: [Pg.471]    [Pg.473]    [Pg.471]    [Pg.473]    [Pg.106]    [Pg.194]    [Pg.367]    [Pg.2685]    [Pg.2900]    [Pg.524]    [Pg.367]    [Pg.193]    [Pg.2058]    [Pg.38]    [Pg.41]    [Pg.44]    [Pg.361]    [Pg.156]    [Pg.427]    [Pg.236]    [Pg.733]    [Pg.240]    [Pg.2]    [Pg.49]    [Pg.230]    [Pg.321]    [Pg.403]    [Pg.505]    [Pg.508]    [Pg.539]    [Pg.585]   
See also in sourсe #XX -- [ Pg.12 ]

See also in sourсe #XX -- [ Pg.9 ]




SEARCH



Well-defined colloidal systems

© 2024 chempedia.info