Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surfactants from ethylene oxide

The basic petrochemical feedstocks are ethylene and benzene which are converted to the surfactant intermediates ethylene oxide, linear alkyl benzene (LAB), and detergent alcohols. Oleochemical or natural surfactants are commonly derived from plant oils (coconut and pahn oils), from plant carbohydrates such as sorbitol, sucrose, and glucose or from animal fats such as tallow. [Pg.181]

Among commercial nonionic surfactants, those made from fatty alcohols with ethylene oxide are the most commonly used. Ethoxylation offers the production of a wide range of nonionic surfactants as the hydrophobic part, and the ethylene oxide number can be easily adjusted according to the desired properties. The chemical reaction to convert a fatty alcohol into a nonionic ethoxylated surfactant uses ethylene oxide under pressure (typically 2-8 bars) and heat (typically 120-200°C). Actually, fatty alcohols have a hydroxyl group that can react further with ethylene oxide providing polyoxyethylene compounds with a range of molecular weights. [Pg.481]

When it comes to the hydrophobic part of a surfactant, the natural oleochemical source predominantly offers straight hydrophobic chains with even amounts of carbon atoms. These structures are not always optimal and it has been shown that some branching that does not destroy the biodegradability is preferable from a performance point of view in many applications like cleaning, wetting, etc. On the hydrophilic side, one of the most interesting structural elements that forms the non-ionic surfactants as well as some of the anionic surfactants is ethylene oxide, which at present is made from petroleum sources, i.e. ethylene. [Pg.336]

Three generations of latices as characterized by the type of surfactant used in manufacture have been defined (53). The first generation includes latices made with conventional (/) anionic surfactants like fatty acid soaps, alkyl carboxylates, alkyl sulfates, and alkyl sulfonates (54) (2) nonionic surfactants like poly(ethylene oxide) or poly(vinyl alcohol) used to improve freeze—thaw and shear stabiUty and (J) cationic surfactants like amines, nitriles, and other nitrogen bases, rarely used because of incompatibiUty problems. Portiand cement latex modifiers are one example where cationic surfactants are used. Anionic surfactants yield smaller particles than nonionic surfactants (55). Often a combination of anionic surfactants or anionic and nonionic surfactants are used to provide improved stabiUty. The stabilizing abiUty of anionic fatty acid soaps diminishes at lower pH as the soaps revert to their acids. First-generation latices also suffer from the presence of soap on the polymer particles at the end of the polymerization. Steam and vacuum stripping methods are often used to remove the soap and unreacted monomer from the final product (56). [Pg.25]

High purity 4-dodecylphenol is used to produce specialty surfactants by its reaction with ethylene oxide. The low color of high purity 4-dodecylphenol is important in this appHcation from a standpoint of aesthetics. 4-Dodecylphenol is also used to produce phenoHc resins which are used in adhesive appHcations and printing inks. 4-Dodecylphenol is also used as an epoxy curing catalyst where the addition of 4-dodecylphenol accelerates curing of the epoxy resin to a hard, nontacky soHd. [Pg.67]

Ethylene oxide adds to the bis(2-hydtoxyethyl) teitiaiy amine in a random fashion where x y y = n y2. Ethoxylated amines, varying from strongly cationic to very weakly cationic in character, are available containing up to 50 mol of ethylene oxide/mol of amine. Ethyoxylated fatty amine quaternaries, cationic surfactants (both chloride from methyl chloride and acetate from acetic acid), ate also available. [Pg.219]

Polyall lene Oxide Block Copolymers. The higher alkylene oxides derived from propjiene, butylene, styrene (qv), and cyclohexene react with active oxygens in a manner analogous to the reaction of ethylene oxide. Because the hydrophilic oxygen constitutes a smaller proportion of these molecules, the net effect is that the oxides, unlike ethylene oxide, are hydrophobic. The higher oxides are not used commercially as surfactant raw materials except for minor quantities that are employed as chain terminators in polyoxyethylene surfactants to lower the foaming tendency. The hydrophobic nature of propylene oxide units, —CH(CH2)CH20—, has been utilized in several ways in the manufacture of surfactants. Manufacture, properties, and uses of poly(oxyethylene- (9-oxypropylene) have been reviewed (98). [Pg.254]

Ethoxylation of alkyl amine ethoxylates is an economical route to obtain the variety of properties required by numerous and sometimes smaH-volume industrial uses of cationic surfactants. Commercial amine ethoxylates shown in Tables 27 and 28 are derived from linear alkyl amines, ahphatic /-alkyl amines, and rosin (dehydroabietyl) amines. Despite the variety of chemical stmctures, the amine ethoxylates tend to have similar properties. In general, they are yellow or amber Hquids or yellowish low melting soHds. Specific gravity at room temperature ranges from 0.9 to 1.15, and they are soluble in acidic media. Higher ethoxylation promotes solubiUty in neutral and alkaline media. The lower ethoxylates form insoluble salts with fatty acids and other anionic surfactants. Salts of higher ethoxylates are soluble, however. Oil solubiUty decreases with increasing ethylene oxide content but many ethoxylates with a fairly even hydrophilic—hydrophobic balance show appreciable oil solubiUty and are used as solutes in the oil phase. [Pg.256]

Butyl glycol ethers, the largest volume derivatives of -butyl alcohol used ia solvent appHcations (10), are obtained from the reaction of 1-butanol with ethylene oxide. The most important of these derivatives, 2-butoxyethanol, is used principally ia vinyl and acryHc paints as well as ia lacquers and varnishes. It is also employed ia aqueous cleaners to solubilize organic surfactants. 2-Butoxyethanol [111-76-2] has achieved some growth at the expense of the lower alkoxyethanols (ie, methoxy and ethoxyethanol) because of 2-butoxyethanol s lower toxicity. [Pg.358]

Surfactants and Dispersants. Castor od can be transformed from an od- to a water-soluble surfactant, depending on the moles of ethylene oxide added to its hydroxyl group. A 40 mole ethylene oxide adduct of castor od, known as PEG-40 castor od, is a surfactant that has cosolvent properties and is utilized as a fragrance solubilizer (118). Glycol hydroxystearate emulsifiers are formulated into shampoos to impart finer peadescence and give better stabdity than gylcol stearates (118) (see Hair preparation). [Pg.156]

Although spray-dryiag accommodates relatively high content of surfactants, certain types, such as the alkanolamides and some nonionic surfactants are best added to the product after spray-dryiag. Post additioa aot only protects the surfactant from the heat of the tower but also prevents the formation of aerosols ia the exit gas. Aerosols are more difficult to trap ia the scmbbiag system than soHd fines. They are formed by unsulfonated matter from the manufacture of LAS and nonionic surfactants with short ethylene oxide chains (120). [Pg.538]

Ethylene oxide [75-21-8] was first prepared in 1859 by Wurt2 from 2-chloroethanol (ethylene chlorohydrin) and aqueous potassium hydroxide (1). He later attempted to produce ethylene oxide by direct oxidation but did not succeed (2). Many other researchers were also unsuccesshil (3—6). In 1931, Lefort achieved direct oxidation of ethylene to ethylene oxide using a silver catalyst (7,8). Although early manufacture of ethylene oxide was accompHshed by the chlorohydrin process, the direct oxidation process has been used almost exclusively since 1940. Today about 9.6 x 10 t of ethylene oxide are produced each year worldwide. The primary use for ethylene oxide is in the manufacture of derivatives such as ethylene glycol, surfactants, and ethanolamines. [Pg.450]

Monoester salts of phosphoric acid derived from fatty alcohol ethylene oxide adduct or alkylphenol ethylene oxide adduct useful as surfactants are prepared by addition of R(OCH2CH2) OH, alkali fluoride and (C12P0)20 in a molar ratio of 0.9-1.5 0.05-1 1.0 at -50 to + 10°C and hydrolysis of the Cl-containing intermediates with a base. The monoester phosphates showed comparable or better washing and foaming efficiency than commercial products [12]. [Pg.562]

A useful way of classifying chemicals is shown in Fig. 2.1. Chemicals are divided on the basis of volume and character. Bulk chemicals, or commodities, are produced in large quantities and sold on the basis of an industry specification. There is essentially no difference in the product from different suppliers. Typical examples would be acetone, ethylene oxide, and phenol. Pseudo commodities are also made in large quantities but are sold on the basis of their performance. In many cases the product is formulated and properties can differ from one supplier to another. Examples include large volume polymers, surfactants, paints, etc. [Pg.15]

Nearly all nonionic surfactants contain the same type of hydrophobes as do anionic and cationic surfactants, with solubilisation and surfactant properties arising from the addition of ethylene oxide to give a product having the general formula 9.40. Usually, depending on the... [Pg.23]

Although there are other types of nonionic surfactant, the great majority are adducts of ethylene oxide with hydrophobes derived from three sources ... [Pg.24]

Surfactants can be produced from both petrochemical resources and/or renewable, mostly oleochemical, feedstocks. Crude oil and natural gas make up the first class while palm oil (+kernel oil), tallow and coconut oil are the most relevant representatives of the group of renewable resources. Though the worldwide supplies of crude oil and natural gas are limited—estimated in 1996 at 131 X 1091 and 77 X 109 m3, respectively [28]—it is not expected that this will cause concern in the coming decades or even until the next century. In this respect it should be stressed that surfactant products only represent 1.5% of all petrochemical uses. Regarding the petrochemically derived raw materials, the main starting products comprise ethylene, n-paraffins and benzene obtained from crude oil by industrial processes such as distillation, cracking and adsorption/desorption. The primary products are subsequently converted to a series of intermediates like a-olefins, oxo-alcohols, primary alcohols, ethylene oxide and alkyl benzenes, which are then further modified to yield the desired surfactants. [Pg.48]

Nonionic surfactants contain (Fig. 23) no ionic functionalities, as their name implies, and include ethylene oxide adducts (EOA) of alkylphenols and fatty alcohols. Production of detergent chain-length fatty alcohols from both natural and petrochemical precursors has now increased with the usage of alkylphenol ethoxylates (APEO) for some applications. This is environmentally less acceptable because of the slower rate of biodegradation and concern regarding the toxicity of phenolic residues [342]. [Pg.51]

M. For nonionic surfactant, we used Newcol 1102, 1103 and 1105. These surfactants contain dodecanol ethoxylate. The last digit in the Newcol number represents the ethylene oxide (EO) number. The CMC values for pure dodecanol ethoxylate ( ) with EO number from 3 to 5 are in the concentration range of 0.001-0.003%. C value in... [Pg.92]

In all of these data what requires explanation is the effectiveness of the dodecyl chain, the decreasing activity with increasing ethylene oxide chain length above EiQ-14 the increase in activity when we move from a very hydrophobic surfactant with short ethylene oxide chain to the optimum, and the decrease in activity with increasing lipophilicity of compounds with alkyl chain lengths greater than Cl2. [Pg.195]


See other pages where Surfactants from ethylene oxide is mentioned: [Pg.8]    [Pg.110]    [Pg.8]    [Pg.14]    [Pg.533]    [Pg.298]    [Pg.40]    [Pg.312]    [Pg.27]    [Pg.145]    [Pg.449]    [Pg.27]    [Pg.67]    [Pg.233]    [Pg.243]    [Pg.245]    [Pg.254]    [Pg.343]    [Pg.753]    [Pg.606]    [Pg.610]    [Pg.452]    [Pg.372]    [Pg.434]    [Pg.23]    [Pg.688]    [Pg.269]    [Pg.60]    [Pg.190]    [Pg.192]   
See also in sourсe #XX -- [ Pg.191 ]

See also in sourсe #XX -- [ Pg.183 ]




SEARCH



Ethylene from oxidation

Ethylene oxide, from

Ethylene surfactants

© 2024 chempedia.info