Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface modifications polymerization

Atmospheric Plasma Surface Modification Polymeric Surfaces... [Pg.95]

Surface Modification. Plasma surface modification can include surface cleaning, surface activation, heat treatments, and plasma polymerization. Surface cleaning and surface activation are usually performed for enhanced joining of materials (see Metal SURFACE TREATMENTS). Plasma heat treatments are not, however, limited to high temperature equiUbrium plasmas on metals. Heat treatments of organic materials are also possible. Plasma polymerization crosses the boundaries between surface modification and materials production by producing materials often not available by any other method. In many cases these new materials can be appHed directly to a substrate, thus modifying the substrate in a novel way. [Pg.115]

Patterns of ordered molecular islands surrounded by disordered molecules are common in Langmuir layers, where even in zero surface pressure molecules self-organize at the air—water interface. The difference between the two systems is that in SAMs of trichlorosilanes the island is comprised of polymerized surfactants, and therefore the mobihty of individual molecules is restricted. This lack of mobihty is probably the principal reason why SAMs of alkyltrichlorosilanes are less ordered than, for example, fatty acids on AgO, or thiols on gold. The coupling of polymerization and surface anchoring is a primary source of the reproducibihty problems. Small differences in water content and in surface Si—OH group concentration may result in a significant difference in monolayer quahty. Alkyl silanes remain, however, ideal materials for surface modification and functionalization apphcations, eg, as adhesion promoters (166—168) and boundary lubricants (169—171). [Pg.538]

Organic titanates perform three important functions for a variety of iadustrial appHcations. These are (/) catalysis, especially polyesterification and olefin polymerization (2) polymer cross-linking to enhance performance properties and (J) Surface modification for adhesion, lubricity, or pigment dispersion. [Pg.161]

Surface modification of a contact lens can be grouped into physical and chemical types of treatment. Physical treatments include plasma treatments with water vapor (siUcone lens) and oxygen (176) and plasma polymerization for which the material surface is exposed to the plasma in the presence of a reactive monomer (177). Surfaces are also altered with exposure to uv radiation (178) or bombardment with oxides of nitrogen (179). Ion implantation (qv) of RGP plastics (180) can greatiy increase the surface hardness and hence the scratch resistance without seriously affecting the transmission of light. [Pg.107]

Chemical surface modifications The first surface modification for the purpose of eliminating EOF and protein adsorption was recommended by Hjerten.28 The attachment of vinyl silanes allowed the polymerization of a variety of molecules to the surface. Most of the chemical modifications used for preparing capillaries for electrophoresis originated from the experience acquired over the years preparing GC and LC stationary phases. Chemical modification should conform to certain requirements, including the prevention of adsorption, the provision of stable and constant EOF over a wide pH range, chemical stability, ease of preparation, and reproduciblity of preparation. The effects of silanization of the inner surface of capillaries on electrophoretic separations have been extensively studied.26-29... [Pg.393]

Many particle types contain functional groups that are built into the polymer backbone and displayed on their surface. The quantity of these groups can vary widely depending on the type and ratios of monomers used in the polymerization process or the degree of secondary surface modifications that have been done. Some common particle functionalities are shown in Figure 14.6. Many of these functionalized particles can be used to couple covalently biomolecules through the appropriate reaction conditions (Ilium and Jones, 1985 Arshady, 1993). For each type of particle, manufacturers may offer several different densities of functional groups for different applications. [Pg.594]

In dentistry, silicones are primarily used as dental-impression materials where chemical- and bioinertness are critical, and, thus, thoroughly evaluated.546 The development of a method for the detection of antibodies to silicones has been reviewed,547 as the search for novel silicone biomaterials continues. Thus, aromatic polyamide-silicone resins have been reviewed as a new class of biomaterials.548 In a short review, the comparison of silicones with their major competitor in biomaterials, polyurethanes, has been conducted.549 But silicones are also used in the modification of polyurethanes and other polymers via co-polymerization, formation of IPNs, blending, or functionalization by grafting, affecting both bulk and surface characteristics of the materials, as discussed in the recent reviews.550-552 A number of papers deal specifically with surface modification of silicones for medical applications, as described in a recent reference.555 The role of silicones in biodegradable polyurethane co-polymers,554 and in other hydrolytically degradable co-polymers,555 was recently studied. [Pg.681]

In a previous section, the effect of plasma on PVA surface for pervaporation processes was also mentioned. In fact, plasma treatment is a surface-modification method to control the hydrophilicity-hydrophobicity balance of polymer materials in order to optimize their properties in various domains, such as adhesion, biocompatibility and membrane-separation techniques. Non-porous PVA membranes were prepared by the cast-evaporating method and covered with an allyl alcohol or acrylic acid plasma-polymerized layer the effect of plasma treatment on the increase of PVA membrane surface hydrophobicity was checked [37].The allyl alcohol plasma layer was weakly crosslinked, in contrast to the acrylic acid layer. The best results for the dehydration of ethanol were obtained using allyl alcohol treatment. The selectivity of treated membrane (H20 wt% in the pervaporate in the range 83-92 and a water selectivity, aH2o, of 250 at 25 °C) is higher than that of the non-treated one (aH2o = 19) as well as that of the acrylic acid treated membrane (aH2o = 22). [Pg.128]

As this brief overview demonstrates, novel copolymers obtained by hybridization of the linear and globular architectural states are readily prepared through a variety of synthetic approaches. In general the dendritic components of the hybrid copolymers are well defined, with unique molecular and structural characteristics. In contrast, all the linear components prepared polymerization are less precisely defined and are polydisperse. Only the very short linear components, themselves prepared by stepwise synthesis just like the dendrons, are monodisperse and can be used to prepare well-defined, monodisperse hybrids. While architectural and structural precision may be of great importance for the determination of ultimate properties, some degree of structural variation is quite acceptable for practical applications in many areas including, for example, surface modification, sensing, or encapsulated delivery. [Pg.193]

There are several other active topics under examination in our laboratory, for example, surface modification of polymers under phase transfer catalyzed reactions and single electron transfer phase transfer catalyzed polymerizations. The limited space, however, precludes discussion here. [Pg.112]

Tab. 9.2 Specific surface modifications and SAM systems of particles or planar substrates for the surface-initiated free radical polymerization of vinyl monomers. [Pg.402]


See other pages where Surface modifications polymerization is mentioned: [Pg.234]    [Pg.234]    [Pg.492]    [Pg.414]    [Pg.3]    [Pg.32]    [Pg.52]    [Pg.71]    [Pg.164]    [Pg.201]    [Pg.244]    [Pg.364]    [Pg.874]    [Pg.765]    [Pg.325]    [Pg.326]    [Pg.237]    [Pg.220]    [Pg.229]    [Pg.325]    [Pg.439]    [Pg.490]    [Pg.615]    [Pg.763]    [Pg.152]    [Pg.107]    [Pg.665]    [Pg.217]    [Pg.218]    [Pg.260]    [Pg.395]    [Pg.411]   
See also in sourсe #XX -- [ Pg.89 , Pg.90 , Pg.91 , Pg.92 , Pg.93 , Pg.94 , Pg.95 , Pg.96 , Pg.97 , Pg.98 , Pg.99 , Pg.100 , Pg.101 ]




SEARCH



Atmospheric Plasma Surface Modification Polymeric Surfaces

Effects of surface modification on polymeric biocomposites for orthopedic applications

Miniemulsion polymerization surface modification

Modification polymerization

Polymeric Materials for Surface Modification

Polymeric membranes surface modification

Polymeric surfaces

Polymeric surfaces surface

Surface chemical modification polymeric materials, plasma

Surface chemical modification polymerization

Surface modification initiated grafting polymerization

Surface modification of polymeric biomaterials

Surface modification techniques polymerization

Surface polymerization

Surface-polymerized polymer modification

© 2024 chempedia.info