Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface glucose

Insulin stimulates translocation of the glucose transporter protein from cytosol to the cell surface. Glucose transport protein carries out the facilitated transport of glucose. [Pg.587]

Sorbitol is manufactured by the reduction of glucose in aqueous solution using hydrogen with a nickel catalyst. It is used in the manufacture of ascorbic acid (vitamin C), various surface active agents, foodstuffs, pharmaceuticals, cosmetics, dentifrices, adhesives, polyurethane foams, etc. [Pg.368]

Perhaps the most common type of problem encountered in the analytical lab is a quantitative analysis. Examples of typical quantitative analyses include the elemental analysis of a newly synthesized compound, measuring the concentration of glucose in blood, or determining the difference between the bulk and surface concentrations of Cr in steel. Much of the analytical work in clinical, pharmaceutical, environmental, and industrial labs involves developing new methods for determining the concentration of targeted species in complex samples. Most of the examples in this text come from the area of quantitative analysis. [Pg.9]

The absorption of sulfonylureas from the upper gastrointestinal tract is faidy rapid and complete. The agents are transported in the blood as protein-bound complexes. As they are released from protein-binding sites, the free (unbound) form becomes available for diffusion into tissues and to sites of action. Specific receptors are present on pancreatic islet P-ceU surfaces which bind sulfonylureas with high affinity. Binding of sulfonylureas to these receptors appears to be coupled to an ATP-sensitive channel to stimulate insulin secretion. These agents may also potentiate insulin-stimulated glucose transport in adipose tissue and skeletal muscle. [Pg.341]

Fig. 4. Schematic of a multisequence biosensor in which the target glucose is first converted to glucose-6-phosphate, G6P, in the test solution by hexokinase. G6P then reacts selectively with glucose-6-phosphate dehydrogenase immobilized on the quartz crystal surface. Electrons released in the reaction then chemically reduce the Pmssian blue film (see Fig. 3), forcing an uptake of potassium ions. The resulting mass increase is manifested as a... Fig. 4. Schematic of a multisequence biosensor in which the target glucose is first converted to glucose-6-phosphate, G6P, in the test solution by hexokinase. G6P then reacts selectively with glucose-6-phosphate dehydrogenase immobilized on the quartz crystal surface. Electrons released in the reaction then chemically reduce the Pmssian blue film (see Fig. 3), forcing an uptake of potassium ions. The resulting mass increase is manifested as a...
The dye is excited by light suppHed through the optical fiber (see Fiber optics), and its fluorescence monitored, also via the optical fiber. Because molecular oxygen, O2, quenches the fluorescence of the dyes employed, the iatensity of the fluorescence is related to the concentration of O2 at the surface of the optical fiber. Any glucose present ia the test solution reduces the local O2 concentration because of the immobilized enzyme resulting ia an iacrease ia fluorescence iatensity. This biosensor has a detection limit for glucose of approximately 100 ]lM , response times are on the order of a miaute. [Pg.110]

A commercial bacterial cellulose product (CeUulon) was recently introduced by Weyerhaeuser (12). The fiber is produced by an aerobic fermentation of glucose from com symp in an agitated fermentor (13,14). Because of a small particle diameter (10 P-m), it has a surface area 300 times greater than normal wood cellulose, and gives a smooth mouthfeel to formulations in which it is included. CeUulon has an unusual level of water binding and works with other viscosity builders to improve their effectiveness. It is anticipated that it wiU achieve GRAS status, and is neutral in sensory quaUty microcrystaUine ceUulose has similar attributes. [Pg.237]

Fig. 2. A representation of the cellulose chain ia solution, projected against three two-dimensional surfaces. The circles represent the oxygen atoms that link the iadividual glucose residues, and the lines take the place of the sugar residues. This result of a modeling study (39) iadicated a molecule somewhat more... Fig. 2. A representation of the cellulose chain ia solution, projected against three two-dimensional surfaces. The circles represent the oxygen atoms that link the iadividual glucose residues, and the lines take the place of the sugar residues. This result of a modeling study (39) iadicated a molecule somewhat more...
The next major bonded phase project was the development of the GBR resin, which stands for modified glucose bonded on both the backbone and the ring of basic PDVB gels. The manufacture of this product was ultimately achieved, as outlined later. The gel is first brominated, which places bromine atoms on both tertiary hydrogens of the PDVB. The brominated gel is then reacted with chlorosulfonic acid, and a specially treated reduced D-glucosamine is coupled to the gel. This process has the potential to covalently bond up to three sugar residues to each available divinylbenzene residue in the PDVB polymer. The exact reaction conditions used are proprietary however, the surface of the finished product is believed to look similar to Figs. 13.11 and 13.12. [Pg.374]

The Jordi glucose-DVB column is a highly polar GPC column used for separating polar compounds. Modified glucose units are bonded to the DVB backbone to yield a hydrophilic surface (Fig. 13.16). [Pg.376]

The sun provides about 0.50 calorie on each square centimeter of the earth s surface every minute. How long would it take ten leaves to make 1.8 grams of glucose if the area of each leaf is 10 cm2 and if only 10% of the energy is used in the reaction ... [Pg.431]

Further improvements can be achieved by replacing the oxygen with a non-physiological (synthetic) electron acceptor, which is able to shuttle electrons from the flavin redox center of the enzyme to the surface of the working electrode. Glucose oxidase (and other oxidoreductase enzymes) do not directly transfer electrons to conventional electrodes because their redox center is surroimded by a thick protein layer. This insulating shell introduces a spatial separation of the electron donor-acceptor pair, and hence an intrinsic barrier to direct electron transfer, in accordance with the distance dependence of the electron transfer rate (11) ... [Pg.177]

Describe various routes for facilitating the electrical communication between the redox center of glucose oxidase and an electrode surface. [Pg.202]

Later, surface-acting polyglucosides were created. These sugar-based detergents are easily broken down by microbes, leaving no traces in the environment. They consist of a pair of glucose molecules, with hydrocarbon side chains attached to act as the hydrophobic ends. They are milder than soaps, and they work in hard water. [Pg.213]

The use of glutaric dialdehyde as a coupling agent bound the enzymes trypsin or glucose-6-phosphate dehydrogenase to the surface. A large part of the enzymic activity was retained (Fig. 4), and the activity was such that the particle-enzyme conjugate could be used in laboratory scale continuous-flow reactors. [Pg.172]


See other pages where Surface glucose is mentioned: [Pg.440]    [Pg.197]    [Pg.394]    [Pg.507]    [Pg.394]    [Pg.148]    [Pg.440]    [Pg.197]    [Pg.394]    [Pg.507]    [Pg.394]    [Pg.148]    [Pg.592]    [Pg.353]    [Pg.292]    [Pg.153]    [Pg.338]    [Pg.43]    [Pg.46]    [Pg.297]    [Pg.273]    [Pg.27]    [Pg.409]    [Pg.104]    [Pg.230]    [Pg.299]    [Pg.462]    [Pg.760]    [Pg.142]    [Pg.163]    [Pg.280]    [Pg.281]    [Pg.233]    [Pg.548]    [Pg.550]    [Pg.604]    [Pg.625]    [Pg.783]    [Pg.177]    [Pg.178]    [Pg.157]    [Pg.168]   
See also in sourсe #XX -- [ Pg.315 ]




SEARCH



© 2024 chempedia.info