Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Superoxide production, oxidation

Nitric oxide may also be an antioxidant by virtue of the feet that it can directly inhibit NADPH oxidase and thus prevent superoxide production (Clancy etaJ., 1992). This inhibition was reported to be independent of the reaction between nitric oxide and superoxide, which might be expected to be pro-oxidant (see Section 2.2.3). [Pg.29]

To study the effects of iron overloading on inflammatory cells, Muntane et al. [186] investigated the effect of iron dcxtran administration on the acute and chronic phases of carrageenan-induced glanuloma. It was found that iron dcxtran increased the iron content in plasma and stores, and enhanced lipid peroxidation and superoxide production by inflammatory cells. At the same time, iron dcxtran had a beneficial effect on recovery from the anemia of inflammation. It has been suggested that iron overload may affect nitric oxide production in animals. For example, alveolar macrophages from iron-overloaded rats stimulated with LPS or interferon-7 diminished NO release compared to normal rats [187]. [Pg.710]

At the beginning only XO and not XDH was considered as a superoxide producer. For example, in 1985 McCord [19] suggested that the conversion of XDH into XO is responsible for an increase in superoxide production in postischemic reperfusion injury. However, it has later been shown [20,21] that XDH itself is a producer of superoxide although not so effective as XO. Moreover, the efficiency of superoxide production differs for different types of the enzyme. Thus, 2.8 to 3.0 mol of superoxide were produced by chicken liver XDH, while superoxide production by bovine milk XDH was insignificant [21]. Sanders et al. [22] found that NADH oxidation by human milk and by bovine milk XDHs catalyzed superoxide production more rapidly than XO this process was inhibited by NAD and diphenyleneiodo-nium but not by the established XO inhibitors allopurinol and oxypurinol. [Pg.720]

The existence of nitric oxide synthase (NOS) in phagocytes (see below) provides a different kind of stimulation and the inhibition of NADPH oxidase. It has been found [72] that the low physiological concentrations of peroxynitrite formed from NO and superoxide stimulated superoxide production by PMA-activated human PMNs through the ERK MAPK pathway, while higher peroxynitrite concentrations inhibited it. Moreover, NADPH oxidase was inhibited by lidocaine, a sodium-blocker, in OZ-activated neutrophils through the suppression of p47phox translocation [73]. [Pg.724]

Simultaneous generation of nitric oxide and superoxide by NO synthases results in the formation of peroxynitrite. As the reaction between these free radicals proceeds with a diffusion-controlled rate (Chapter 21), it is surprising that it is possible to detect experimentally both superoxide and NO during NO synthase catalysis. However, Pou et al. [147] pointed out that the reason is the fact that superoxide and nitric oxide are generated consecutively at the same heme iron site. Therefore, after superoxide production NO synthase must cycle twice before NO production. Correspondingly, there is enough time for superoxide to diffuse from the enzyme and react with other biomolecules. [Pg.732]

In addition to nitric oxide, superoxide, and peroxynitrite, NO synthases are able to generate secondary free radicals because similar to cytochrome P-450 reductase, the reductase domain can transfer an electron from the heme to a xenobiotic. Thus it has been found [158,159] that neuronal NO synthase NOS I catalyzed the formation of CH3CH(OH) radical from ethanol. It was suggested that the perferryl complex of NOS I is responsible for the formation of such secondary radicals. Miller [160] also demonstrated that 1,3-dinitrobenzene mediated the formation of superoxide by nNOS. It was proposed that the enhancement of superoxide production in the presence of 1,3-dinitrobenzene converted nNOS into peroxynitrite-produced synthase and may be a mechanism of neurotoxicity of certain nitro compounds. [Pg.732]

At the same time the interaction of superoxide with MPO may affect a total superoxide production by phagocytes. Thus, the superoxide adduct of MPO (Compound III) is probably quantitatively formed in PMA-stimulated human neutrophils [223]. Edwards and Swan [224] proposed that superoxide production regulate the respiratory burst of stimulated human neutrophils. It has also been suggested that the interaction of superoxide with HRP, MPO, and LPO resulted in the formation of Compound III by a two-step reaction [225]. Superoxide is able to react relatively rapidly with peroxidases and their catalytic intermediates. For example, the rate constant for reaction of superoxide with Fe(III)MPO is equal to 1.1-2.1 x 1061 mol 1 s 1 [226], and the rate constants for the reactions of Oi and HOO with HRP Compound I are equal to 1.6 x 106 and 2.2 x 1081 mol-1 s-1, respectively [227]. Thus, peroxidases may change their functions, from acting as prooxidant enzymes and the catalysts of free radical processes, and acquire antioxidant catalase properties as shown for HRP [228] and MPO [229]. In this case catalase activity depends on the two-electron oxidation of hydrogen peroxide by Compound I. [Pg.738]

In earlier studies [5,6] superoxide detection in mitochondria was equated to hydrogen peroxide formation. However, while it is quite possible that superoxide is a stoichiometric precursor of mitochondrial hydrogen peroxide, it is understandable that the level of hydrogen peroxide may be decreased due to the reactions with various mitochondrial oxidants. Moreover, superoxide level can be underestimated due to the reaction with mitochondrial MnSOD. Several authors [7,8] assumed that mitochondrial superoxide production may be estimated through cyanide-resistant respiration, which supposedly characterizes univalent dioxygen reduction. This method was applied for the measurement of superoxide production under in vitro normoxic and hyperoxic conditions, in spite of the finding [7] that cyanide-resistant respiration reflects also the oxidation of various substrates (lipids, amino acids, and nucleotides). Earlier,... [Pg.748]

Now, we may consider in detail the mechanism of oxygen radical production by mitochondria. There are definite thermodynamic conditions, which regulate one-electron transfer from the electron carriers of mitochondrial respiratory chain to dioxygen these components must have the one-electron reduction potentials more negative than that of dioxygen Eq( 02 /02]) = —0.16 V. As the reduction potentials of components of respiratory chain are changed from 0.320 to +0.380 V, it is obvious that various sources of superoxide production may exist in mitochondria. As already noted earlier, the two main sources of superoxide are present in Complexes I and III of the respiratory chain in both of them, the role of ubiquinone seems to be dominant. Although superoxide may be formed by the one-electron oxidation of ubisemiquinone radical anion (Reaction (1)) [10,22] or even neutral semiquinone radical [9], the efficiency of these ways of superoxide formation in mitochondria is doubtful. [Pg.750]

As a rule, oxygen radical overproduction in mitochondria is accompanied by peroxidation of mitochondrial lipids, glutathione depletion, and an increase in other parameters of oxidative stress. Thus, the enhancement of superoxide production in bovine heart submitochondrial particles by antimycin resulted in a decrease in the activity of cytochrome c oxidase through the peroxidation of cardiolipin [45]. Iron overload also induced lipid peroxidation and a decrease in mitochondrial membrane potential in rat liver mitochondria [46]. Sensi et al. [47] demonstrated that zinc influx induced mitochondrial superoxide production in postsynaptic neurons. [Pg.752]

Superoxide generation was detected via the NADPH-dependent SOD-inhibitable epinephrine oxidation and spin trapping [15,16], Grover and Piette [17] proposed that superoxide is produced equally by both FAD and FMN of cytochrome P-450 reductase. However, from comparison of the reduction potentials of FAD (-328 mV) and FMN (190 mV) one might expect FAD to be the most efficient superoxide producer. Recently, the importance of the microsomal cytochrome h558 reductase-catalyzed superoxide production has been shown in bovine cardiac myocytes [18]. [Pg.766]

As mentioned earlier, when NO concentration exceeds that of superoxide, nitric oxide mostly exhibits an inhibitory effect on lipid peroxidation, reacting with lipid peroxyl radicals. These reactions are now well studied [42-44]. The simplest suggestion could be the participation of NO in termination reaction with peroxyl radicals. However, it was found that NO reacts with at least two radicals during inhibition of lipid peroxidation [50]. On these grounds it was proposed that LOONO, a product of the NO recombination with peroxyl radical LOO is rapidly decomposed to LO and N02 and the second NO reacts with LO to form nitroso ester of fatty acid (Reaction (7), Figure 25.1). Alkoxyl radical LO may be transformed into a nitro epoxy compound after rearrangement (Reaction (8)). In addition, LOONO may be hydrolyzed to form fatty acid hydroperoxide (Reaction (6)). Various nitrated lipids can also be formed in the reactions of peroxynitrite and other NO metabolites. [Pg.777]

Oxidized LDL are considered to be one of the major factors associated with the development of atherosclerosis. The earliest event is the transport of LDL into the arterial wall where LDL, being trapped in subendothelial space, are oxidized by oxygen radicals produced by endothelial and arterial smooth muscle cells. The oxidation of LDL in the arterial wall is affected by various factors including hemodynamic forces such as shear stress and stretch force. Thus, it has been shown [177] that stress force imposed on vascular smooth muscle cells incubated with native LDL increased the MDA formation by about 150% concomitantly with the enhancement of superoxide production. It was suggested that oxidation was initiated by NADPH oxidase-produced superoxide and depended on the presence of metal ions. [Pg.798]

LOX-dependent superoxide production was also registered under ex vivo conditions [55]. It has been shown that the intravenous administration of lipopolysaccharide to rats stimulated superoxide production by alveolar and peritoneal macrophages. O Donnell and Azzi [56] proposed that a relatively high rate of superoxide production by cultured human fibroblasts in the presence of NADH was relevant to 15-LOX-catalyzed oxidation of unsaturated acids and was independent of NADPH oxidase, prostaglandin H synthase, xanthine oxidase, and cytochrome P-450 activation or mitochondrial respiration. LOX might also be involved in the superoxide production by epidermal growth factor-stimulated pheochromo-cytoma cells [57]. [Pg.811]

High antioxidative activity carvedilol has been shown in isolated rat heart mitochondria [297] and in the protection against myocardial injury in postischemic rat hearts [281]. Carvedilol also preserved tissue GSL content and diminished peroxynitrite-induced tissue injury in hypercholesterolemic rabbits [298]. Habon et al. [299] showed that carvedilol significantly decreased the ischemia-reperfusion-stimulated free radical formation and lipid peroxidation in rat hearts. Very small I50 values have been obtained for the metabolite of carvedilol SB 211475 in the iron-ascorbate-initiated lipid peroxidation of brain homogenate (0.28 pmol D1), mouse macrophage-stimulated LDL oxidation (0.043 pmol I 1), the hydroxyl-initiated lipid peroxidation of bovine pulmonary artery endothelial cells (0.15 pmol U1), the cell damage measured by LDL release (0.16 pmol l-1), and the promotion of cell survival (0.13 pmol l-1) [300]. SB 211475 also inhibited superoxide production by PMA-stimulated human neutrophils. [Pg.885]

Vitamin B6 (pyridoxine) and its derivative pyridoxamine are apparently able to inhibit superoxide production, reduce lipid peroxidation and glycosylation in high glucose-exposed erythrocytes [353], It was suggested that the suppression of oxidative stress in erythrocytes may be a new mechanism by which these natural compounds inhibit the development of complication in diabetes mellitus. [Pg.893]


See other pages where Superoxide production, oxidation is mentioned: [Pg.518]    [Pg.406]    [Pg.1296]    [Pg.235]    [Pg.74]    [Pg.148]    [Pg.190]    [Pg.719]    [Pg.720]    [Pg.720]    [Pg.723]    [Pg.726]    [Pg.727]    [Pg.728]    [Pg.731]    [Pg.732]    [Pg.732]    [Pg.749]    [Pg.750]    [Pg.752]    [Pg.753]    [Pg.755]    [Pg.755]    [Pg.756]    [Pg.759]    [Pg.767]    [Pg.767]    [Pg.781]    [Pg.811]    [Pg.816]    [Pg.852]    [Pg.853]    [Pg.870]    [Pg.896]   


SEARCH



Superoxide production

© 2024 chempedia.info