Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

In-vivo conditions

The hydration shell is formed with the increasing of the water content of the sample and the NA transforms from the unordered to A- and then to B form, in the case of DNA and DNA-like polynucleotides and salt concentrations similar to in vivo conditions. The reverse process, dehydration of NA, results in the reverse conformational transitions but they take place at the values of relative humidity (r.h.) less than the forward direction [12]. Thus, there is a conformational hysteresis over the hydration-dehydration loop. The adsorption isotherms of the NAs, i.e. the plots of the number of the adsorbed water molecules versus the r.h. of the sample at constant temperature, also demonstrate the hysteresis phenomena [13]. The hysteresis is i( producible and its value does not decrease for at least a week. [Pg.117]

Protonated and diprotonated carbonic acid and carbon dioxide may also have implications in biological carboxylation processes. Although behavior in highly acidic solvent systems cannot be extrapolated to in vivo conditions, related multidentate interactions at enzymatic sites are possible. [Pg.197]

Organization into macromolecular structures. There are no apparent templates necessary for the assembly of muscle filaments. The association of the component proteins in vitro is spontaneous, stable, and relatively quick. Filaments will form in vitro from the myosins or actins from all three kinds of muscle. Yet in vitro smooth muscle myosin filaments are found to be stable only in solutions somewhat different from in vivo conditions. The organizing principles which govern the assembly of myosin filaments in smooth muscle are not well understood. It is clear, however, a filament is a sturdy structure and that individual myosin molecules go in and out of filaments whose structure remains in a functional steady-state. As described above, the crossbridges sticking out of one side of a smooth muscle myosin filament are all oriented and presumably all pull on the actin filament in one direction along the filament axis, while on the other side the crossbridges all point and pull in the opposite direction. The complement of minor proteins involved in the structure of the smooth muscle myosin filament is unknown, albeit not the same as that of skeletal muscle since C-protein and M-protein are absent. [Pg.170]

The stability of the complexes based on DNA condensation is a legitimate issue for nanoassemblies based on DNA. Under in vivo conditions, DNA as a constituent of a gene... [Pg.441]

Csanady GA, Laib JG. Metabolic transformation of halogenated and other alkenes- a theoretical approach. Estimation of metabolic reactivities for in vivo conditions. Toxicology 1995 75 217-23. [Pg.463]

Based on the limitations of using human subjects, simple alternative in vitro models were developed to investigate mechanisms involved in the intestinal absorption process of a compound of interest and to screen the relative bioavailability of a compound from various food matrices. However, the data generated from in vitro approaches must be taken with caution because they are obtained under relatively simplified and static conditions compared to dynamic physiological in vivo conditions. Indeed, the overall bioavailability of a compound is the result of several complex steps that are influenced by many factors including factors present in the gastrointestinal lumen and intestinal cells as described later. Nevertheless, these in vitro approaches are useful tools for guiding further smdies in humans. [Pg.152]

Said et al. [78] measured pHm in rat intestine under in vitro and in vivo conditions. As pH/, was kept constant at 7.4, pHm values varied within 6.4-6.3 (proximal... [Pg.17]

Overall, in this chapter we have attempted to emphasize the need for more in vivo studies to be conducted to clarify the dynamic interplay between mechanisms of drug transport and metabolism in the human intestine under in vivo conditions. There is also a need to develop additional in vivo techniques for direct measurements of these processes in regions along the GI tract in humans, and to relate the findings to various physiological/pathophysiological conditions. This would clearly increase our knowledge of the mechanisms involved, and provide in vivo data to help develop and validate rapid and reliable in vitro intestinal models. [Pg.181]

Heterogeneous conditions both in terms of hydrodynamics and composition prevails in the GI tract. Parameters such as D, Cs, V, and h are influenced by the conditions in the GI tract which change with time. Thus, time dependent rate coefficients govern the dissolution process under in vivo conditions. One of the major sources of variability for poorly soluble drugs can be associated with the time dependent character of the rate coefficient, which governs drug dissolution under in vivo conditions. [Pg.197]

Under in vivo conditions, the free thiol has also been found in plasma and urine of patients with rheumatoid arthritis after treatment with the drug. It was also found... [Pg.125]

Merdan T, Kunath K, Petersen H, Bakowsky U, Voigt KH, Kopecek J, Kissel T (2005) PEGylation of poly(ethylene imine) affects stability of complexes with plasmid DNA under in vivo conditions in a dose-dependent manner after intravenous injection into mice. Bioconjug Chem 16 785-792... [Pg.21]

Merkel OM, Librizzi D, Pfestroff A, Schurrat T, Buyens K, Sanders NN, De Smedt SC, Behe M, Kissel T (2009) Stability of siRNA polyplexes from poly(ethylenimine) and poly (ethylenimine)-g-poly(ethylene glycol) under in vivo conditions effects on pharmacokinetics and biodistribution measured by Fluorescence Fluctuation Spectroscopy and Single Photon Emission Computed Tomography (SPECT) imaging. J Control Release 138 148-159... [Pg.22]

Probably, the most convincing proof of free radical mechanism of peroxynitrite reactions is the formation of dityrosine [117,118]. It has been suggested [118] that the nitric dioxide radical is responsible for the formation of both 3-nitrotyrosine and dityrosine (Figure 21.1), however, hydroxyl radicals (which were identified in this system by ESR spectroscopy [119]) may also participate in this process. Pfeiffer et al. [118] proposed that dityrosine is predominantly formed at low fluxes of superoxide and nitric oxide, which corresponds to in vivo conditions, however, this observation was not confirmed by Sawa et al. [117],... [Pg.703]

The reaction of peroxynitrite with the biologically ubiquitous C02 is of special interest due to the presence of both compounds in living organisms therefore, we may be confident that this process takes place under in vivo conditions. After the discovery of this reaction in 1995 by Lymar [136], the interaction of peroxynitrite with carbon dioxide and the reactions of the formed adduct nitrosoperoxocarboxylate ONOOCOO has been thoroughly studied. In 1996, Lymar et al. [137] have shown that this adduct is more reactive than peroxynitrite in the reaction with tyrosine, forming similar to peroxynitrite dityrosine and 3-nitrotyrosine. Experimental data were in quantitative agreement with free radical-mediated mechanism yielding tyrosyl and nitric dioxide radicals as intermediates and were inconsistent with electrophilic mechanism. The lifetime of ONOOCOO was estimated as <3 ms, and the rate constant of Reaction (42) k42 = 2 x 103 1 mol 1 s 1. [Pg.705]

The mechanism of iron-initiated superoxide-dependent lipid peroxidation has been extensively studied by Aust and his coworkers [15-18]. It was found that superoxide produced by xanthine oxidase initiated lipid peroxidation, but this reaction was not inhibited by hydroxyl radical scavengers and, therefore the formation of hydroxyl radicals was unimportant. Lipid peroxidation depended on the Fe3+/Fe2+ ratio, with 50 50 as the optimal value [19]. Superoxide supposedly stimulated peroxidation both by reducing ferric ions and oxidizing ferrous ions. As superoxide is able to release iron from ferritin, superoxide-promoted lipid peroxidation can probably proceed under in vivo conditions [16,20]. [Pg.775]

The expression of 15-LOX in atherosclerotic lesions is one of the major causes of LDL oxidative modification during atherosclerosis. To obtain the experimental evidence of a principal role of 15-LOX in atherosclerosis under in vivo conditions, Kuhn et al. [67] studied the structure of oxidized LDL isolated from the aorta of rabbits fed with a cholesterol-rich diet. It was found that specific LOX products were present in early atherosclerotic lesions. On the later stages of atherosclerosis the content of these products diminished while the amount of products originating from nonenzymatic lipid peroxidation increased. It was concluded that arachidonate 15-LOX is of pathophysiological importance at the early stages of atherosclerosis. Folcik et al. [68] demonstrated that 15-LOX contributed to the oxidation of LDL in human atherosclerotic plaques because they observed an increase in the stereospecificity of oxidation in oxidized products. Arachidonate 15-LOX is apparently more active in young human lesions and therefore, may be of pathophysiological importance for earlier atherosclerosis. In advanced human plaques nonenzymatic lipid peroxidation products prevailed [69],... [Pg.813]

Although metal-catalyzed protein oxidation is undoubtedly a very effective oxidative process, the origin of free metal ions under in vivo conditions is still uncertain (see Chapter 21). However, protein oxidation can probably be initiated by metal-containing enzymes. Mukhopadhyay and Chatterjee [31] have shown that NADPH-stimulated oxidation of microsomal proteins was mediated by cytochrome P-450 and occurred in the absence of free metal ions. It is important that in contrast to metal ion-stimulated oxidation of proteins, ascorbate inhibited and not enhanced P-450-dependent protein oxidation reacting with the oxygenated P-450 complex. The following mechanism of P-450-dependent oxidation of the side chain protein amino acid residues has been proposed ... [Pg.826]

NADPH might be considered as an indirect antioxidant due to its function as the reductant of various oxidized substrates, for example in the re-reduction of GSSG into GSH. However, it has recently been shown [1] that NADPH possesses the free radical scavenging activity reacting with such free radicals as CO/, N02 ROO and R0 . It should be noted that the efficiency of NADPH may increase under in vivo conditions due to its regeneration by numerous enzymes. [Pg.887]

Another mode of antioxidant activity of ebselen is the suppression of peroxynitrite formation. Ebselen rapidly reacts with peroxynitrite to form ebselen Se-oxide [332]. Ebselen Se-oxide is reduced by glutathione [333] therefore, ebselen can be regenerated under in vivo conditions by redox cycling (Figure 29.20). [Pg.890]


See other pages where In-vivo conditions is mentioned: [Pg.2817]    [Pg.45]    [Pg.158]    [Pg.201]    [Pg.126]    [Pg.134]    [Pg.135]    [Pg.137]    [Pg.196]    [Pg.218]    [Pg.47]    [Pg.54]    [Pg.55]    [Pg.61]    [Pg.195]    [Pg.492]    [Pg.33]    [Pg.72]    [Pg.22]    [Pg.720]    [Pg.727]    [Pg.752]    [Pg.773]    [Pg.773]    [Pg.774]    [Pg.788]    [Pg.794]    [Pg.795]    [Pg.834]    [Pg.836]    [Pg.878]    [Pg.889]   


SEARCH



Discussion of ROS Effects under In Vivo Conditions

Generation of ROS under In Vivo Conditions

© 2024 chempedia.info