Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Epinephrine oxidation

Superoxide generation was detected via the NADPH-dependent SOD-inhibitable epinephrine oxidation and spin trapping [15,16], Grover and Piette [17] proposed that superoxide is produced equally by both FAD and FMN of cytochrome P-450 reductase. However, from comparison of the reduction potentials of FAD (-328 mV) and FMN (190 mV) one might expect FAD to be the most efficient superoxide producer. Recently, the importance of the microsomal cytochrome h558 reductase-catalyzed superoxide production has been shown in bovine cardiac myocytes [18]. [Pg.766]

Correlations between Lucigenin-Amplified CL and SOD-Inhibited Cytochrome c Reduction or Epinephrine Oxidation... [Pg.968]

One of the oldest methods of superoxide detection is the oxidation of epinephrine [72]. This method has the typical disadvantages of oxidizable compounds due to the possibility of the nonsuperoxide-mediated oxidation of epinephrine. Still, SOD-inhibitable epinephrine oxidation might be used as a superoxide assay [72]. [Pg.969]

Roginsky, V. A. Bruchelt, G. BartuU, O. Ubiquinone-0 (2,3-dimethoxy-5-methyl-l,4-benzoquinone) as effective catalyzer of ascorbate and epinephrine oxidation and damager of neuroblastoma cells. Biochem. Pharmacol. 1998, 55, 85-91. [Pg.295]

Many anodic oxidations involve an ECE pathway. For example, the neurotransmitter epinephrine can be oxidized to its quinone, which proceeds via cyclization to leukoadrenochrome. The latter can rapidly undergo electron transfer to form adrenochrome (5). The electrochemical oxidation of aniline is another classical example of an ECE pathway (6). The cation radical thus formed rapidly undergoes a dimerization reaction to yield an easily oxidized p-aminodiphenylamine product. Another example (of industrial relevance) is the reductive coupling of activated olefins to yield a radical anion, which reacts with the parent olefin to give a reducible dimer (7). If the chemical step is very fast (in comparison to the electron-transfer process), the system will behave as an EE mechanism (of two successive charge-transfer steps). Table 2-1 summarizes common electrochemical mechanisms involving coupled chemical reactions. Powerful cyclic voltammetric computational simulators, exploring the behavior of virtually any user-specific mechanism, have... [Pg.35]

Dopamine (5-hydroxylase is a copper-containing enzyme involved in the synthesis of the catecholamines norepinephrine and epinephrine from tyrosine in the adrenal medulla and central nervous system. During hy-droxylation, the Cu+ is oxidized to Cu " reduction back... [Pg.495]

Stablizers. Stabilizers are ingredients added to a formula to decrease the rate of decomposition of the active ingredients. Antioxidants are the principal stabilizers added to some ophthalmic solutions, primarily those containing epinephrine and other oxidizable drugs. Sodium bisulfite or metabisulfite are used in concentration up to 0.3% in epinephrine hydrochloride and bitartrate solutions. Epinephrine borate solutions have a pH range of 5.5 7.5 and offer a more difficult challenge to formulators who seek to prevent oxidation. Several patented antioxidant systems have been developed specifically for this compound. These consist of ascorbic acid and acetylcysteine, and sodium bisulfite and 8-hydroxyquinoline. Isoascorbic acid is also an effective antioxidant for this drug. Sodium thiosulfate is used with sodium sulfacetamide solutions. [Pg.458]

Many hormones and other blood-borne substances (including drugs) also alter contractile activity of smooth muscle. Some of the more important substances include epinephrine norepinephrine angiotensin II vasopressin oxytocin and histamine. Locally produced substances that may alter contraction in the tissue in which they are synthesized include nitric oxide prostaglandins leukotrienes carbon dioxide and hydrogen ion. [Pg.160]

The 02, radical can act as an oxidant as well as a reductant and chemical estimates of its production can also be based on its ability to oxidize epinephrine to adren-ochrome [62], These chemical methods have the additional advantage of not requiring highly specialized equipments. Also based on its redox property, the 02 radical can be determined by chemiluminescence methods through the measurement of the intensity of the fluorescence radiation emitted after chemical oxidation of 02 by, e.g., lucigenin [63-67], These methods, however, are limited by the poor selectivity and lack of capability for in-vivo performance. [Pg.170]

A particular interest for clinical applications was a possibility for detection of dopamine by its oxidation on nickel [19], cobalt [65], and osmium [66] hexacyanofer-ates. Except for oxidation of dopamine, cobalt and osmium hexacyanoferrates were active in oxidation of epinephrine and norepinephrine. For clinical analysis it is also important to carry out the detection of morphine on cobalt [67] and ferric [68] hexacyanoferrates, as well as the detection of oxidizable amino acids (cystein, methionine) by manganous [69] and ruthenium [70] hexacyanoferrate-modified electrodes. In general, oxidation of thiols was first shown for Prussian blue [71] and nickel hexacyanoferrate [72], This approach has been used for the detection of thiols in rat striatum microdialysate [73], Alternatively, the detection of thiocholine with Prussian blue was employed for pesticide determination in acetylcholine-esterase test [74],... [Pg.440]

Various hydroxyl and amino derivatives of aromatic compounds are oxidized by peroxidases in the presence of hydrogen peroxide, yielding neutral or cation free radicals. Thus the phenacetin metabolites p-phenetidine (4-ethoxyaniline) and acetaminophen (TV-acetyl-p-aminophenol) were oxidized by LPO or HRP into the 4-ethoxyaniline cation radical and neutral V-acetyl-4-aminophenoxyl radical, respectively [198,199]. In both cases free radicals were detected by using fast-flow ESR spectroscopy. Catechols, Dopa methyl ester (dihydrox-yphenylalanine methyl ester), and 6-hydroxy-Dopa (trihydroxyphenylalanine) were oxidized by LPO mainly to o-semiquinone free radicals [200]. Another catechol derivative adrenaline (epinephrine) was oxidized into adrenochrome in the reaction catalyzed by HRP [201], This reaction can proceed in the absence of hydrogen peroxide and accompanied by oxygen consumption. It was proposed that the oxidation of adrenaline was mediated by superoxide. HRP and LPO catalyzed the oxidation of Trolox C (an analog of a-tocopherol) into phenoxyl radical [202]. The formation of phenoxyl radicals was monitored by ESR spectroscopy, and the rate constants for the reaction of Compounds II with Trolox C were determined (Table 22.1). [Pg.736]

In contrast, much is known about the catabolism of catecholamines. Adrenaline (epinephrine) released into the plasma to act as a classical hormone and noradrenaline (norepinephrine) from the parasympathetic nerves are substrates for two important enzymes monoamine oxidase (MAO) found in the mitochondria of sympathetic neurones and the more widely distributed catechol-O-methyl transferase (COMT). Noradrenaline (norepinephrine) undergoes re-uptake from the synaptic cleft by high-affrnity transporters and once within the neurone may be stored within vesicles for reuse or subjected to oxidative decarboxylation by MAO. Dopamine and serotonin are also substrates for MAO and are therefore catabolized in a similar fashion to adrenaline (epinephrine) and noradrenaline (norepinephrine), the final products being homo-vanillic acid (HVA) and 5-hydroxyindoleacetic acid (5HIAA) respectively. [Pg.97]

The use of HPLC to analyze biogenic amines and their acid metabolites is well documented. HPLC assays for classical biogenic amines such as norepinephrine (NE), epinephrine (E), dopamine (DA), and 5-hydroxytryptamine (5-HT, serotonin) and their acid metabolites are based on several physicochemical properties that include a catechol moiety (aryl 1,2-dihydroxy), basicity, easily oxidized nature, and/or native fluorescence characteristics (Anderson, 1985). Based on these characteristics, various types of detector systems can be employed to assay low concentrations of these analytes in various matrices such as plasma, urine, cerebrospinal fluid (CSE), tissue, and dialysate. [Pg.25]

Fe (quaterpy)(OH)2] anchored to poly-L-glutamate or to poly-D-glutamate acts as a catalyst for the oxidation of epinephrine by H202. [Fe(quaterpy)X2] interacts with bio-substrates. [(H20)(quaterpy)Fe —O—Fe (quaterpy)(H20)] + has been prepared as the dihydrate of its perchlorate salt. " ... [Pg.454]

The coenzyme tetrahydrofolate (THF) is the main agent by which Ci fragments are transferred in the metabolism. THF can bind this type of group in various oxidation states and pass it on (see p. 108). In addition, there is activated methyl, in the form of S-adenosyl methionine (SAM). SAM is involved in many methylation reactions—e. g., in creatine synthesis (see p. 336), the conversion of norepinephrine into epinephrine (see p. 352), the inactivation of norepinephrine by methylation of a phenolic OH group (see p. 316), and in the formation of the active form of the cytostatic drug 6-mercaptopurine (see p. 402). [Pg.110]

The mechanism of antidepressive action of this series of drugs is likely associated with their inhibition of the oxidizing deamination process of the neurotransmitters norepinephrine, epinephrine, dopamine, and serotonin, which participate in the transmission of nerve excitement in the CNS. A major drawback of these drugs is the high toxicity associated with their inhibition of not only MAO, but also a number of other nonspecific enzymes. [Pg.110]


See other pages where Epinephrine oxidation is mentioned: [Pg.19]    [Pg.967]    [Pg.969]    [Pg.20]    [Pg.968]    [Pg.970]    [Pg.46]    [Pg.31]    [Pg.282]    [Pg.19]    [Pg.967]    [Pg.969]    [Pg.20]    [Pg.968]    [Pg.970]    [Pg.46]    [Pg.31]    [Pg.282]    [Pg.408]    [Pg.409]    [Pg.438]    [Pg.273]    [Pg.274]    [Pg.243]    [Pg.392]    [Pg.284]    [Pg.35]    [Pg.499]    [Pg.232]    [Pg.361]    [Pg.1170]    [Pg.167]    [Pg.66]    [Pg.353]    [Pg.1067]    [Pg.219]    [Pg.155]    [Pg.25]   
See also in sourсe #XX -- [ Pg.98 ]




SEARCH



Epinephrin

Epinephrine

© 2024 chempedia.info