Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Supercritical fluid carbon dioxide extraction

The two fluids most often studied in supercritical fluid technology, carbon dioxide and water, are the two least expensive of all solvents. Carbon dioxide is nontoxic, nonflammable, and has a near-ambient critical temperature of 31.1°C. CO9 is an environmentally friendly substitute for organic solvents including chlorocarbons and chloroflu-orocarbons. Supercritical water (T = 374°C) is of interest as a substitute for organic solvents to minimize waste in extraction and reaction processes. Additionally, it is used for hydrothermal oxidation of hazardous organic wastes (also called supercritical water oxidation) and hydrothermal synthesis. [Pg.2000]

The coupling of supercritical fluid extraction (SEE) with gas chromatography (SEE-GC) provides an excellent example of the application of multidimensional chromatography principles to a sample preparation method. In SEE, the analytical matrix is packed into an extraction vessel and a supercritical fluid, usually carbon dioxide, is passed through it. The analyte matrix may be viewed as the stationary phase, while the supercritical fluid can be viewed as the mobile phase. In order to obtain an effective extraction, the solubility of the analyte in the supercritical fluid mobile phase must be considered, along with its affinity to the matrix stationary phase. The effluent from the extraction is then collected and transferred to a gas chromatograph. In his comprehensive text, Taylor provides an excellent description of the principles and applications of SEE (44), while Pawliszyn presents a description of the supercritical fluid as the mobile phase in his development of a kinetic model for the extraction process (45). [Pg.427]

Supercritical fluid extraction (SFE) is a technique in which a supercritical fluid [formed when the critical temperature Tf) and critical pressure Pf) for the fluid are exceeded simultaneously] is used as an extraction solvent instead of an organic solvent. By far the most common choice of a supercritical fluid is carbon dioxide (CO2) because CO2 has a low critical temperature (re = 31.1 °C), is inexpensive, and is safe." SFE has the advantage of lower viscosity and improved diffusion coefficients relative to traditional organic solvents. Also, if supercritical CO2 is used as the extraction solvent, the solvent (CO2) can easily be removed by bringing the extract to atmospheric pressure. Supercritical CO2 itself is a very nonpolar solvent that may not have broad applicability as an extraction solvent. To overcome this problem, modifiers such as methanol can be used to increase the polarity of the SFE extraction solvent. Another problem associated with SFE using CO2 is the co-extraction of lipids and other nonpolar interferents. To overcome this problem, a combination of SFE with SPE can be used. Stolker et al." provided a review of several SFE/SPE methods described in the literature. [Pg.306]

Beside the typical extraction purposes, different applications using supercritical fluids -mainly carbon dioxide - are tested in the laboratory as well as on an industrial scale. [Pg.393]

A supercritical extraction procedure was developed to determine naled, methyleugenol, and cuelure in soil samples [28]. Recovery of methyleugenol was reported as 91-101% after spiking the sample with standard at concentrations of 0.25-45 pg/g. The supercritical fluid was carbon dioxide (pressure of 27.6 Mpa), and the method worked for 5-30% soil moisture. [Pg.172]

Extraction and separation processes are basic industrial operations applied in many areas with considerable economic relevance. Supercritical fluids, especially carbon dioxide, are of increasing interest for new separation processes in the fields of foodstuffs, cosmetics and pharmaceuticals. [Pg.49]

Supercritical or near-critical fluids can be used both for extraction and chromatography. Many chemicals, primarily organic species, can be separated and analyzed using this approach [6], which is particularly useful in the food industry. Substances that are useful as supercritical fluids include carbon dioxide, water, ethane, ethene, propane, xenon, ammonia, nitrous oxide, and a fluoroform. Carbon dioxide is most commonly used, typically at a pressure near 100 bar. The required operating pressure ranges from about 43 bar for propane to 221 bar for water. Sometimes a solvent modifier is added (also called an entrainer or cosolvent), particularly when carbon dioxide is used. [Pg.712]

When on-column injection is used the end of the transfer capillary is inserted into the column inlet or retention gap where decompression of the supercritical fluid occurs. Carbon dioxide gas exits through the column and the seal made between the restrictor and septum (unless a closed injector is used). The analytes are focused by cold trapping in the stationary phase. The transfer line must be physically removed from the injector at the completion of the extraction to establish the normal carrier gas flow for the separation. Analyte transfer to the column is virtually quantitative but blockage of the restrictor is more conunon and involatile material accumulates in the injection zone eventually degrading chromatographic performance. The on-column interface is probably a better choice for trace analysis of relatively clean extracts with modest fluid flow rates than the split interface. When optimized both the on-column and split interfaces provide essentially identical peak shapes to those obtained using conventional solution injection. [Pg.204]

A disadvantage of supercritical fluids for extraction is that most common fluids used for extraction (carbon dioxide, nitrous oxide, sulfur hexafluoride, etc.) are weak solvents, limiting the polarity and molecular weight range of analytes that can be efficiently extracted. Also, for trace analysis the availability of fluids of adeguate ptirity may be a problem. [Pg.409]

To date most of the work which has been done with supercritical fluid extraction has concentrated on the extraction of analytes from solid matrices or liquids supported on an inert solid carrier matrix. The extraction of aqueous matrices presents particular problems [276-278]. The co-extraction of water causes problems with restrictor plugging, column deterioration, and phase separation if a nonpolar solvent is used for sample collection. Also, carbon dioxide isay have limited extraction efficiency for many water soluble compounds. [Pg.411]

Ashraf-Khorassani M, Taylor LT, Zimmerman P. Nitrous oxide versus carbon dioxide for supercritical fluid extraction and chromatography of amines. Anal. Chem. 1990 62 1177-1180. [Pg.268]

Reindt and Hoffler [50] optimized parameters in the supercritical fluid extraction of polyaromatic hydrocarbons from soil. These workers used carbon dioxide -8% methanol for extraction and obtained 88-101% recovery of polyaromatic hydrocarbons in the final high-performance liquid chromatography. [Pg.132]

Supercritical fluid extraction with carbon dioxide has been applied to the determination of polyaromatic hydrocarbons in soil. [Pg.133]

Fernandez et al. [9] used supercritical fluid extraction combined with ion pair liquid chromatography to determine quaternary ammonium in digested sludges and marine sediments. Carbon dioxide modified with 30% methanol was used as the extractant at an operating pressure of 380atm. Between 0.2 and 3.7g kg-1 surfactant was found in Swiss works effluent sludges, determined with a relative standard deviation of 7%. [Pg.145]

Von Bavel et al. [55] have developed a solid phase carbon trap (PX-21 active carbon) for the simultaneous determination of polychlorodibenzo-p-dioxins and polychlorodibenzofurans also polychlorobiphenyls and chlorinated insecticides in soils using superfluid extraction liquid chromatography for the final determination. Supercritical fluid extraction with carbon dioxide has been applied to the determination of dioxins in soil [114],... [Pg.183]

Snyder et al. [20] have compared supercritical fluid extraction with classical sonication and Soxhlet extraction for the extraction of selected pesticides from soils. Samples extracted with supercritical carbon dioxide modified with 3% methanol at 350atm and 50°C gave a =85% recovery of organochlorine insecticides including Dichlorvos, Endrin, Endrin aldehyde, p,p -DDT mirex and decachlorobiphenyl (and organophosphorus insecticides). [Pg.210]

Snyder et al. [94] compared supercritical extraction with classical sonication and Soxhlet extraction for the extraction of selected organophosphorus insecticides from soil. Samples extracted with supercritical carbon dioxide modified with 3% methanol at 350atm and 50°C gave a =85% recovery of Diazinon (diethyl-2-isopropyl-6-methyl-4-pyrimidinyl phosphorothiodate or 0,0 diethyl-0-(2-isopropyl-6-methyl-4-pyrimidyl) phosphorothioate). Ronnel (or Fenchlorphos) 0,0-dimethyl-0-2,4,5 trichlorophenol phosphorothiodate), Parathion ethyl (diethyl-p-nitrophenyl (phosphorothioate), Tetrachlorovinphos (trans,-2-chloro-l-(2,4,5 trichlorophenyl) vinyl (chlorophenyl-O-methylphenyl phosphorothioate) and Methiadathion. Supercritical fluid extraction with methanol modified carbon dioxide has been applied to the determination of organophosphorus insecticides in soil [260]. [Pg.234]

Steinheimer et al. [103] used supercritical fluid chromatography to extract Atrazine, diethyl Atrazine and Cyanazine from Canadian cornbelt soils by supercritical fluid extraction with carbon dioxide. [Pg.239]

The method based on immunosorbents coupled on-line with liquid chromatography-atmospheric pressure chemical ionization mass spectrometry [109], discussed in section 9.4.2.1, has been applied to the determination of substituted urea type herbicides. Supercritical fluid extraction with methanol modified carbon dioxide has been applied to the determinants of sulfonyl urea herbicides in soil [261],... [Pg.250]

Supercritical fluid extraction is an attractive analytical technique for recovering organic compounds from soils and sediments. Carbon dioxide is... [Pg.264]

Fahing et al. [24] studied the modifier effects in the supercritical fluid extraction of organics from soils and clays. Swelling experiments showed that unmodified carbon dioxide did not cause swelling of the soil whereas carbon dioxide modified with water did cause rapid swelling of soil, thereby facilitating extraction of the organics. [Pg.300]


See other pages where Supercritical fluid carbon dioxide extraction is mentioned: [Pg.458]    [Pg.458]    [Pg.235]    [Pg.1087]    [Pg.128]    [Pg.154]    [Pg.113]    [Pg.58]    [Pg.249]    [Pg.230]    [Pg.8]    [Pg.242]    [Pg.165]    [Pg.170]    [Pg.14]    [Pg.248]    [Pg.505]    [Pg.119]    [Pg.132]    [Pg.265]    [Pg.1132]    [Pg.1135]   


SEARCH



Carbon dioxide extract

Carbon dioxide extraction

Carbon extraction

Extractants supercritical fluid

Fluid extraction

Supercritical carbon dioxid

Supercritical carbon dioxide

Supercritical carbon dioxide extraction

Supercritical extractants

Supercritical extraction

Supercritical fluid extraction

Supercritical fluid extraction fluids

Supercritical fluids carbon dioxide

© 2024 chempedia.info