Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfuric zirconium

Copper. The physical properties of pure copper are given in Table 11. The mechanical properties of pure copper are essentially the same as those for ClOl and CllO. The coppers represent a series of alloys ranging from the commercially pure copper, ClOl, to the dispersion hardened alloy C157. The difference within this series is the specification of small additions of phosphoms, arsenic, cadmium, tellurium, sulfur, zirconium, as well as oxygen. To be classified as one of the coppers, the alloy must contain at least 99.3% copper. [Pg.229]

As in the case of igneous processes, the sedimentary processes of rock formation lead to the formation economic mineral deposits. Many valuable mineral deposits of iron, manganese, copper, phosphorus, sulfur, zirconium, the rare Earths, uranium and vanadium owe their origin to sedimentary processes. Some of these constitute special types of sedimentary rocks, while others form important constituents of sedimentary rocks. [Pg.47]

Antimony trioxide Barium carbonate Barium nitrate Bismuth oxide Cerium oxide Cobalt Copper nitrate (ic) Coumarone/indene resin Feldspar Lead oxide, yellow Molybdenum trioxide 2-Octanol Potassium carbonate Sulfur Zirconium silicate enamels, automotive Urea-formaldehyde resin enamels, baking Gilsonite... [Pg.5222]

CHARTS TABLES Discovery of the elements Sulfur - Zirconium... [Pg.248]

To be classified as copper the compound must contain a minimum of 99.3% copper. Elements such as silver, arsenic, phosphorus, antimony, tel-urium, nickel, cadmium, lead, sulfur, zirconium, magnesium, boron, and bismuth may be present singly or in combination. [Pg.50]

To be classified as a copper, an alloy must contain a minimum of 99.3% copper. Elements such as silver, arsenic, lead, phosphorus, antimony, tellurium, nickel, cadmium, sulfur, zirconium, manganese, boron, and bismuth may be present, singly or in combination. Because of the good electrical properties of copper, it is used primarily in electrical or electronic applications such as bus bars, waveguides, wires, switches, and transfer components. Because copper is a noble metal, it also finds many applications in corrosive environments. Table 18.4 gives the chemical composition of some of the coppers used in corrosion applications. [Pg.472]

Unlike many common metals, zirconium has very little affinity for sulfur. Zirconium-sulfur compounds form only at temperatures above 500°C. Furthermore, there is no instance of zirconium-sulfur bonds forming in... [Pg.595]

Lead dioxide Aluminum carbide, hydrogen peroxide, hydrogen sulfide, hydroxylamine, ni-troalkanes, nitrogen compounds, nonmetal halides, peroxoformic acid, phosphorus, phosphorus trichloride, potassium, sulfur, sulfur dioxide, sulfides, tungsten, zirconium... [Pg.1209]

Fig. 1. Global distribution of seabed mineral deposits, where x represents chromite + barite titanium, zirconium, hafnium, and thorium tin I gold, platinum, and silver 3 sand and gravel shell, calcium carbonate gems marine polymetaUic sulfides phosphorites Cl cobalt cmsts S sulfur and B... Fig. 1. Global distribution of seabed mineral deposits, where x represents chromite + barite titanium, zirconium, hafnium, and thorium tin I gold, platinum, and silver 3 sand and gravel shell, calcium carbonate gems marine polymetaUic sulfides phosphorites Cl cobalt cmsts S sulfur and B...
Residual Elements. In addition to carbon, manganese, phosphoms, sulfur, and silicon which are always present, carbon steels may contain small amounts of hydrogen, oxygen, or nitrogen, introduced during the steelmaking process nickel, copper, molybdenum, chromium, and tin, which may be present in the scrap and aluminum, titanium, vanadium, or zirconium, which may have been introduced during deoxidation. [Pg.396]

Several colorimetric procedures for fluoride are available, but it is usually desirable to distill the sample from concentrated sulfuric acid prior to analysis to eliminate interferences. One method is based upon bleaching a dye formed by the reaction of zirconium and sodium 2-(p-sulfophenylazo)-l,8-dihydroxy-3,6-naphthalenedisulfonate (SPADNS reagent) (28). [Pg.231]

Zirconium is a highly active metal which, like aluminum, seems quite passive because of its stable, cohesive, protective oxide film which is always present in air or water. Massive zirconium does not bum in air, but oxidizes rapidly above 600°C in air. Clean zirconium plate ignites spontaneously in oxygen of ca 2 MPa (300 psi) the autoignition pressure drops as the metal thickness decreases. Zirconium powder ignites quite easily. Powder (<44 fim or—325 mesh) prepared in an inert atmosphere by the hydride—dehydride process ignites spontaneously upon contact with air unless its surface has been conditioned, ie, preoxidized by slow addition of air to the inert atmosphere. Heated zirconium is readily oxidized by carbon dioxide, sulfur dioxide, or water vapor. [Pg.427]

Zirconium is readily attacked by acidic solutions containing fluorides. As Httle as 3 ppm flouride ion in 50% boiling sulfuric acid corrodes zirconium at 1.25 mm/yr. Solutions of ammonium hydrogen fluoride or potassium hydrogen fluoride have been used for pickling and electropolishing zirconium. Commercial pickling is conducted with nitric—hydrofluoric acid mixtures (see Metal surface treatments). [Pg.428]

Zirconium is completely resistant to sulfuric acid up to Foiling temperatures, at concentrations up to 70 wt %, except that the heat-affected zones at welds have lower resistance in >55 wt % concentration acid (Fig. 1). Fluoride ions must be excluded from the sulfuric acid. Cupric, ferric, or nitrate ions significantly increase the corrosion rate of zirconium in 65—75 wt % sulfuric acid. [Pg.429]

In the initial thiocyanate-complex Hquid—Hquid extraction process (42,43), the thiocyanate complexes of hafnium and zirconium were extracted with ether from a dilute sulfuric acid solution of zirconium and hafnium to obtain hafnium. This process was modified in 1949—1950 by an Oak Ridge team and is stiH used in the United States. A solution of thiocyanic acid in methyl isobutyl ketone (MIBK) is used to extract hafnium preferentially from a concentrated zirconium—hafnium oxide chloride solution which also contains thiocyanic acid. The separated metals are recovered by precipitation as basic zirconium sulfate and hydrous hafnium oxide, respectively, and calcined to the oxide (44,45). This process is used by Teledyne Wah Chang Albany Corporation and Western Zirconium Division of Westinghouse, and was used by Carbomndum Metals Company, Reactive Metals Inc., AMAX Specialty Metals, Toyo Zirconium in Japan, and Pechiney Ugine Kuhlmann in France. [Pg.430]

High molecular weight primary, secondary, and tertiary amines can be employed as extractants for zirconium and hafnium in hydrochloric acid (49—51). With similar aqueous-phase conditions, the selectivity is in the order tertiary > secondary > primary amines. The addition of small amounts of nitric acid increases the separation of zirconium and hafnium but decreases the zirconium yield. Good extraction of zirconium and hafnium from ca 1 Af sulfuric acid has been effected with tertiary amines (52—54), with separation factors of 10 or more. A system of this type, using trioctylarnine in kerosene as the organic solvent, is used by Nippon Mining of Japan in the production of zirconium (55). [Pg.430]

Zirconium carbide is inert to most reagents but is dissolved by hydrofluoric acid solutions which also contain nitrate or peroxide ions, and by hot concentrated sulfuric acid. Zirconium carbide reacts exothermically with halogens above 250°C to form zirconium tetrahaHdes, and with oxidizers to zirconium dioxide in ak above 700°C. Zirconium carbide forms soHd solutions with other transition-metal carbides and most of the transition-metal... [Pg.433]

Zirconium nitride is dissolved by concentrated hydrofluoric acid, dissolved slowly by hot concentrated sulfuric acid, and oxidizes to zirconium oxide above 700°C in air. [Pg.434]

Ghalcogenides. The reactions of pure zirconium turnings with threefold quantities of elemental sulfur, selenium, or tellurium give ZrS ... [Pg.434]

Several compounds such as BaZrS [12026-44-7], SrZrS [12143-75-8], and CaZrS [59087-48-8], have been made by reacting carbon disulfide with the corresponding zirconate at high temperature (141), whereas PbZrS [12510-11-1] was produced from the elements zirconium and sulfur plus lead sulfide sealed in a platinum capsule which was then pressurized and heated (142). Lithium zirconium disulfide [55964-34-6], LiZrS2, was also synthesized. Zirconium disulfide forms organometaUic intercalations with a series of low ionization (<6.2 eV)-sandwich compounds with parallel rings (143). [Pg.434]

Sulfates. Sulfate ions strongly complex zirconium, removing hydroxyl groups and forming anionic complexes. With increasing acidity, all hydroxyl groups are replaced zirconium sulfate [7446-31-3] Zr(S04)2-4H20, with an orthorhombic stmcture (206), can be crystallized from a 45% sulfuric acid solution. Zirconium sulfate forms various hydrates, and 13 different crystalline Zr(S0 2 5 2 [14644-61-2] systems are described in Reference 207. [Pg.437]

Extraction of Bertrandite. Bertrandite-containing tuff from the Spor Mountain deposits is wet milled to provide a thixotropic, pumpable slurry of below 840 p.m (—20 mesh) particles. This slurry is leached with sulfuric acid at temperatures near the boiling point. The resulting beryUium sulfate [13510-49-1] solution is separated from unreacted soflds by countercurrent decantation thickener operations. The solution contains 0.4—0.7 g/L Be, 4.7 g/L Al, 3—5 g/L Mg, and 1.5 g/L Fe, plus minor impurities including uranium [7440-61-1/, rare earths, zirconium [7440-67-7] titanium [7440-32-6] and zinc [7440-66-6]. Water conservation practices are essential in semiarid Utah, so the wash water introduced in the countercurrent decantation separation of beryUium solutions from soflds is utilized in the wet milling operation. [Pg.66]

Assay of beryUium metal and beryUium compounds is usuaUy accompHshed by titration. The sample is dissolved in sulfuric acid. Solution pH is adjusted to 8.5 using sodium hydroxide. The beryUium hydroxide precipitate is redissolved by addition of excess sodium fluoride. Liberated hydroxide is titrated with sulfuric acid. The beryUium content of the sample is calculated from the titration volume. Standards containing known beryUium concentrations must be analyzed along with the samples, as complexation of beryUium by fluoride is not quantitative. Titration rate and hold times ate critical therefore use of an automatic titrator is recommended. Other fluotide-complexing elements such as aluminum, sUicon, zirconium, hafnium, uranium, thorium, and rate earth elements must be absent, or must be corrected for if present in smaU amounts. Copper-beryUium and nickel—beryUium aUoys can be analyzed by titration if the beryUium is first separated from copper, nickel, and cobalt by ammonium hydroxide precipitation (15,16). [Pg.68]

Nickel—beryllium casting alloys are readily air melted, in electric or induction furnaces. Melt surface protection is suppHed by a blanket of argon gas or an alumina-base slag cover. Furnace linings or cmcibles of magnesia are preferred, with zirconium siUcate or mullite also adequate. Sand, investment, ceramic, and permanent mold materials are appropriate for these alloys. Beryllium ia the composition is an effective deoxidizer and scavenger of sulfur and nitrogen. [Pg.73]

Borides are inert toward nonoxidizing acids however, a few, such as Be2B and MgB2, react with aqueous acids to form boron hydrides. Most borides dissolve in oxidizing acids such as nitric or hot sulfuric acid and they ate also readily attacked by hot alkaline salt melts or fused alkaU peroxides, forming the mote stable borates. In dry air, where a protective oxide film can be preserved, borides ate relatively resistant to oxidation. For example, the borides of vanadium, niobium, tantalum, molybdenum, and tungsten do not oxidize appreciably in air up to temperatures of 1000—1200°C. Zirconium and titanium borides ate fairly resistant up to 1400°C. Engineering and other properties of refractory metal borides have been summarized (1). [Pg.218]

Zirconium lias outstanding resistance to hydrochloric acid and is a cheaper alternative to titanium for this duty. It is superior to titanium in resistance to sulfuric acid. Zirconium has excellent resistance to caustic alkalies in all concentrations and is superior to both titanium and tantalum in this respect. [Pg.98]

Perhaps chemists will be able to mimic nature without duplicating the iron-sulfur-molybdenum structure. For example, a zirconium complex with tetramethyl cyclopentadiene can bind dinitrogen in a manner that breaks the NON bond, as shown below. Treatment with hydrogen gas results in formation of small amounts of ammonia. Although the yields are too low to make this a viable commercial process, researchers hope to make the process more efficient through chemical modifications and changes in conditions. [Pg.1018]


See other pages where Sulfuric zirconium is mentioned: [Pg.273]    [Pg.312]    [Pg.441]    [Pg.26]    [Pg.347]    [Pg.541]    [Pg.379]    [Pg.103]    [Pg.189]    [Pg.429]    [Pg.432]    [Pg.433]    [Pg.434]    [Pg.68]    [Pg.53]    [Pg.2451]    [Pg.535]    [Pg.954]    [Pg.21]    [Pg.257]    [Pg.300]    [Pg.238]    [Pg.238]   
See also in sourсe #XX -- [ Pg.103 ]




SEARCH



© 2024 chempedia.info