Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfur trioxide , concentration

When elemental sulfur or a sulfur-bearing compound is present in any combustion system, the predominant product is sulfur dioxide. The concentration of sulfur trioxide found in combustion systems is most interesting. Even under very lean conditions, the amount of sulfur trioxide formed is only a few percent of that of sulfur dioxide. Generally, however, the sulfur trioxide concentration is higher than its equilibrium value, as would be expected from the relation... [Pg.442]

The use of oleum (H2S04 S03) for maintaining the necessary sulfur trioxide concentration of a sulfonation mixture is a practical procedure. Preferably the oleum and organic compound should be added gradually and concurrently to a large volume of cycle acid so as to take up the water as rapidly as it is formed by the reaction. Sulfur trioxide may be added intermittently to the sulfonation reactor to maintain the sulfur trioxide concentration above the value for the desired degree of sulfonation. [Pg.633]

The sulfur trioxide concentration at this stage is about 10% by volume. After cooling to near ambient temperatures, this product is absorbed in concentrated or nearly concentrated sulfuric acid, where both absorption and hydration occur via countercurrent contact in a chemical stoneware packed tower (Eq. 9.26). [Pg.274]

Water Vapor Add Dew Point °C (°F) for Sulfur Trioxide Concentrations of ... [Pg.477]

Sulfonation (Section 12 4) Sulfonic acids are formed when aromatic compounds are treated with sources of sulfur trioxide These sources can be concentrated sulfuric acid (for very reactive arenes) or solutions of sulfur trioxide in sulfuric acid (for ben zene and arenes less reactive than ben zene)... [Pg.510]

Sulfosahcyhc acid is prepared by heating 10 parts of sahcyhc acid with 50 parts of concentrated sulfuric acid, by chlorosulfonation of sahcyhc acid and subsequent hydrolysis of the acid chloride, or by sulfonation with hquid sulfur trioxide in tetrachloroethylene. It is used as an intermediate in the production of dyestuffs, grease additives, catalysts, and surfactants. It is also useful as a colorimetric reagent for ferric iron and as a reagent for albumin. Table 9 shows the physical properties of sahcyhc acid derivatives. [Pg.290]

Benzene. The reaction of sulfur trioxide and ben2ene in an inert solvent is very fast at low temperatures. Yields of 90% ben2enesulfonic acid can be expected. Increased yields of about 95% can be reali2ed when the solvent is sulfur dioxide. In contrast, the use of concentrated sulfuric acid causes the sulfonation reaction to reach reflux equiUbrium after almost 30 hours at only an 80% yield. The by-product is water, which dilutes the sulfuric acid estabhshing an equiUbrium. [Pg.79]

When the batch is completed, a slight excess of oleum and chlorine is added to reduce to a minimum the residual SCI2. Because thionyl chloride combines readily with sulfur trioxide to form the relatively stable pyrosulfuryl chloride, it is necessary to maintain the concentration of sulfur trioxide in the reaction mass at a low level hence, the addition of oleum to sulfur chloride rather than the reverse. When all of the reactants are added, heat is appHed to the jacket of the reactor and the batch is refluxed until most of the sulfur dioxide, hydrogen chloride, and chlorine are eliminated. The thionyl chloride is then distilled from the reactor. [Pg.141]

Pan and cascade burners are generally more limited ia flexibiHty and are useful only where low sulfur dioxide concentrations are desired. Gases from sulfur burners also contain small amounts of sulfur trioxide, hence the moisture content of the air used can be important ia achieving a corrosion-free operation. Continuous operation at temperatures above the condensation poiat of the product gases is advisable where exposure to steel (qv) surfaces is iavolved. Pressure atomiziag-spray burners, which are particularly suitable when high capacities are needed, are offered by the designers of sulfuric acid plants. [Pg.145]

A tabulation of the partial pressures of sulfuric acid, water, and sulfur trioxide for sulfuric acid solutions can be found in Reference 80 from data reported in Reference 81. Figure 13 is a plot of total vapor pressure for 0—100% H2SO4 vs temperature. References 81 and 82 present thermodynamic modeling studies for vapor-phase chemical equilibrium and liquid-phase enthalpy concentration behavior for the sulfuric acid—water system. Vapor pressure, enthalpy, and dew poiat data are iacluded. An excellent study of vapor—liquid equilibrium data are available (79). [Pg.180]

The sulfur trioxide produced by catalytic oxidation is absorbed in a circulating stream of 98—99% H2SO4 that is cooled to approximately 70—80°C. Water or weaker acid is added as needed to maintain acid concentration. Generally, sulfuric acid of approximately 98.5% concentration is used, because it is near the concentration of minimum total vapor pressure, ie, the sum of SO, H2O, and H2SO4 partial pressures. At acid concentrations much below 98.5% H2SO4, relatively intractable aerosols of sulfuric acid mist particles are formed by vapor-phase reaction of SO and H2O. At much higher acid concentrations, the partial pressure of SO becomes significant. [Pg.183]

Gas leaving the economizer flows to a packed tower where SO is absorbed. Most plants do not produce oleum and need only one tower. Concentrated sulfuric acid circulates in the tower and cools the gas to about the acid inlet temperature. The typical acid inlet temperature for 98.5% sulfuric acid absorption towers is 70—80°C. The 98.5% sulfuric acid exits the absorption tower at 100—125°C, depending on acid circulation rate. Acid temperature rise within the tower comes from the heat of hydration of sulfur trioxide and sensible heat of the process gas. The hot product acid leaving the tower is cooled in heat exchangers before being recirculated or pumped into storage tanks. [Pg.185]

Materials of Construction. Resistance of alloys to concentrated sulfuric acid corrosion iacreases with increasing chromium, molybdenum, copper, and siUcon content. The corrosiveness of sulfuric acid solutions is highly dependent on concentration, temperature, acid velocity, and acid impurities. An excellent summary is available (114). Good general discussions of materials of constmction used ia modem sulfuric acid plants may be found ia References 115 and 116. More detailed discussions are also available (117—121). For nickel-containing alloys Reference 122 is appropriate. An excellent compilation of the relatively scarce Hterature data on corrosion of alloys ia Hquid sulfur trioxide and oleum may be found ia Reference 122. [Pg.189]

Total acidity and total chlorides can be deterrnined by conventional techniques after hydrolysing a sample. Satisfactory procedures for determining hydrogen chloride and free-sulfiir trioxide are described in the Hterature (18,41). Small amounts of both hydrogen chloride and sulfur trioxide can be found in the same sample because of the equiUbrium nature of the Hquid. Procedures for the direct deterrnination of pyrosulfuryl chloride have also been described (42,43), but are not generally required for routine analysis. Small concentrations of sulfuric acid can be deterrnined by electrical conductivity. [Pg.87]

Sulfur Dioxide EPA Method 6 is the reference method for determining emissions of sulfur dioxide (SO9) from stationary sources. As the gas goes through the sampling apparatus (see Fig. 25-33), the sulfuric acid mist and sulfur trioxide are removed, the SO9 is removed by a chemical reaction with a hydrogen peroxide solution, and, finally, the sample gas volume is measured. Upon completion of the rim, the sulfuric acid mist and sulfur trioxide are discarded, and the collected material containing the SO9 is recovered for analysis at the laboratory. The concentration of SO9 in the sample is determined by a titration method. [Pg.2200]

Sulfur oxides (SO,) are compounds of sulfur and oxygen molecules. Sulfur dioxide (SO2) is the predominant form found in the lower atmosphere. It is a colorless gas that can be detected by taste and smell in the range of 1, (X)0 to 3,000 uglm. At concentrations of 10,000 uglm , it has a pungent, unpleasant odor. Sulfur dioxide dissolves readily in water present in the atmosphere to form sulfurous acid (H SOj). About 30% of the sulfur dioxide in the atmosphere is converted to sulfate aerosol (acid aerosol), which is removed through wet or dry deposition processes. Sulfur trioxide (SO3), another oxide of sulfur, is either emitted directly into the atmosphere or produced from sulfur dioxide and is readily converted to sulfuric acid (H2SO4). [Pg.38]

Perfluoro-y-butyrolactone can be prepared from 1,4 diiodoperfluorobutane by reaction with turning sulfuric acid (oleum) [7S] (equation 19) The yield depends on the concentration of sulfur trioxide One of the by-products, 4-iodoperfluo-robutyryl fluoride, can be recycled to increase the overall yield of the lactone Pure sulfur trioxide generates only perfluorotetrahydrofuran, the lodo acyl fluoride, and perfluorosuccmyl fluoride... [Pg.427]

Among the variety of electrophilic species present in concentrated sulfuric acid, sulfur trioxide (Figure 12.4) is probably the actual electrophile in aromatic sulfonation. We can represent the mechanism of sulfonation of benzene by sulfur trioxide by the sequence of steps shown in Figure 12.5. [Pg.479]

The sulfonation of LAB can be carried out with concentrated sulfuric acid, oleum, or sulfur trioxide (S03). With the first two sulfonation reagents large quantities of waste sulfuric acid are obtained, which must be disposed of or processed further. Therefore the use of S03 is preferred. Special reactions were developed for sulfonation using S03 (Table 13). For sulfonation in batch pro-... [Pg.79]

Because sulfur trioxide forms a corrosive acid mist with water vapor, it is absorbed instead in 98% concentrated sulfuric acid to give the dense, oily liquid called oleum ... [Pg.758]

Common pollutants in a titanium dioxide plant include heavy metals, titanium dioxide, sulfur trioxide, sulfur dioxide, sodium sulfate, sulfuric acid, and unreacted iron. Most of the metals are removed by alkaline precipitation as metallic hydroxides, carbonates, and sulfides. The resulting solution is subjected to flotation, settling, filtration, and centrifugation to treat the wastewater to acceptable standards. In the sulfate process, the wastewater is sent to the treatment pond, where most of the heavy metals are precipitated. The precipitate is washed and filtered to produce pure gypsum crystals. All other streams of wastewater are treated in similar ponds with calcium sulfate before being neutralized with calcium carbonate in a reactor. The effluent from the reactor is sent to clarifiers and the solid in the underflow is filtered and concentrated. The clarifier overflow is mixed with other process wastewaters and is then neutralized before discharge. [Pg.949]

Subsequent DTA investigation showed that an exothermic reaction set in above 75°C after an induction period depending on the initial temperature and concentration of reactants, which attained nearly 300°C, well above the decomposition point of the cyclic ester component (170°C). The reaction conditions used could have permitted local over-concentration and overheating effects to occur, owing to slow dissolution of the clumped solid ester and aniline in the nitrobenzene solvent [ ] Crude carbyl sulfate contains excess sulfur trioxide [2]. [Pg.323]

The acid is prepared by sulfonation of nitrobenzene with oleum, and the reaction product consists essentially of a hot solution of the acid in sulfuric acid. A completed 270 1 batch exploded violently after hot storage at 150C for several hours. An exotherm develops at 145°C, and the acid is known to decompose at 200 C [ 1], A similar incident arose from water leaking from a cooling coil into the fuming sulfuric acid reaction medium, which caused an exotherm to over 150°C and subsequent violent decomposition [2], Detailed examination of the thermal decomposition of the acid shows that it is much slower for the isolated acid than for the reaction mass, and that the concentration of sulfur trioxide in the oleum used for sulfonation bears... [Pg.744]

SAR [Sulfuric Acid Recovery] A process for purifying and concentrating used sulfuric acid for re-use. The acid is heated with oxygen at 1,040°C to convert the acid to sulfur dioxide. This is then oxidized over a vanadium-containing catalyst to sulfur trioxide, which is dissolved in fresh sulfuric acid to give 98 percent acid. Developed by L Air Liquide and ICI. First demonstrated in 1991 at a methyl methacrylate plant in Taiwan. [Pg.234]


See other pages where Sulfur trioxide , concentration is mentioned: [Pg.187]    [Pg.137]    [Pg.187]    [Pg.274]    [Pg.157]    [Pg.122]    [Pg.887]    [Pg.136]    [Pg.187]    [Pg.137]    [Pg.187]    [Pg.274]    [Pg.157]    [Pg.122]    [Pg.887]    [Pg.136]    [Pg.372]    [Pg.95]    [Pg.329]    [Pg.146]    [Pg.174]    [Pg.180]    [Pg.193]    [Pg.193]    [Pg.198]    [Pg.201]    [Pg.150]    [Pg.277]    [Pg.118]    [Pg.465]    [Pg.660]    [Pg.567]   


SEARCH



Concentrated sulfuric

Sulfur trioxide

© 2024 chempedia.info