Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Yield dependence

Pure dimethylaniline from commercial dimethylaniline. Into a 250 ml. round-bottomed flask fitted with a reflux condenser place 50 g. (52-5 ml.) of a good commercial sample of dimethylaniline and 25 g. (23 ml.) of acetic anhydride. Heat vmder reflux for 3 hours, and allow to cool. Transfer to a 100 ml, Claisen flask equipped for distillation, and distil using a wire gauze or, better, an air bath (Fig. II, 5, 3). Some acetic acid and the excess of acetic anhydride passes over first, followed by pure dimethylaniline (a colourless liquid) at 193-194°, There is a small dark residue in the flask. The yield depends upon the purity of the commercial sample, but is usually 30-40 g. [Pg.573]

Acid-cataly2ed hydroxylation of naphthalene with 90% hydrogen peroxide gives either 1-naphthol or 2-naphthiol at a 98% yield, depending on the acidity of the system and the solvent used. In anhydrous hydrogen fluoride or 70% HF—30% pyridine solution at — 10 to + 20°C, 1-naphthol is the product formed in > 98% selectivity. In contrast, 2-naphthol is obtained in hydroxylation in super acid (HF—BF, HF—SbF, HF—TaF, FSO H—SbF ) solution at — 60 to — 78°C in > 98% selectivity (57). Of the three commercial methods of manufacture, the pressure hydrolysis of 1-naphthaleneamine with aqueous sulfuric acid at 180°C has been abandoned, at least in the United States. The caustic fusion of sodium 1-naphthalenesulfonate with 50 wt % aqueous sodium hydroxide at ca 290°C followed by the neutralization gives 1-naphthalenol in a ca 90% yield. [Pg.497]

Yields depend on the reactivity of the amines and the choice of reaction conditions, including the choice of copper catalyst. Generally, the reactivity increases with increasing amine basicity. Thus, i7n7-toluidine (pTf = 5.1) reacts four times faster than aniline (pif = 4.7) (27). StericaHy hindered amines such as 3,5-di-amino-2,4,6-trimethylbenzenesulfonic acid react very slowly. [Pg.310]

The acetyl transfer reactions of acetylated pyrazolones (acylotropy) have been carefully studied by Arakawa and Miyasaka (74CPB207,74CPB214) (Section 4.04.2.1.3(x)). Methylation of 3-methyl-l-phenyl-4-phenylazo-5-pyrazolone (402) yields, depending on the experimental conditions, the N- and the O-methylated derivatives (483) and (484) (66BSF2990). These derivatives have been used as model compounds in a study of the tautomerism of (402) (structure 139 Section 4.04.1.5.2). [Pg.264]

The natural laws in any scientific or technological field are not regarded as precise and definitive until they have been expressed in mathematical form. Such a form, often an equation, is a relation between the quantity of interest, say, product yield, and independent variables such as time and temperature upon which yield depends. When it happens that this equation involves, besides the function itself, one or more of its derivatives it is called a differential equation. [Pg.453]

In the presence of aprotonic organic solvents, both aromatic and aliphatic amines interact with 4-nitrophenyldiazonium in the same way. The first stage yields fast in corresponding triazenes. At the second stage, irrespective of initial amine nature, triazenes interact with an excess of diazo reagent and fonu l,3-bis(4-nitrophenyl)-triazene. Triazenes of aliphatic amines transform fast as well. In case of aromatic amines, the second stage yield depends on the inductive constants of substituents in an azo component. [Pg.62]

The time of addition of the perchloride should be made as short as possible consistent with safety. In runs with the above amounts of materials, the time of the addition was about ten minutes. It may again be emphasized that the yield depends largely on the skill of the operator in running the reduction as rapidly as possible. [Pg.91]

The yield depends upon the use of high-quality, fresh lithium aluminum hydride. [Pg.49]

Cluster ions are also emitted from organic materials their identity and yield depend on the chemical structure of the materials. Molecular or quasi-molecular ions may be observed as well as other ions that are formed by fragmentation, rearrangement, decomposition, or reaction [52], Several typical ion formation processes are summarized in Table 3 [40]. [Pg.297]

Perfluoro-y-butyrolactone can be prepared from 1,4 diiodoperfluorobutane by reaction with turning sulfuric acid (oleum) [7S] (equation 19) The yield depends on the concentration of sulfur trioxide One of the by-products, 4-iodoperfluo-robutyryl fluoride, can be recycled to increase the overall yield of the lactone Pure sulfur trioxide generates only perfluorotetrahydrofuran, the lodo acyl fluoride, and perfluorosuccmyl fluoride... [Pg.427]

The addition of imidazole to the ethyl hemiacetal of tnfluoroacetaldehyde provides 1 -(1 -hydroxy-2, 2, 2 -tnfluoroethyl)imidazoles in yields depending upon the electronic nature of the substiments [5] (equation 5) (Table 1)... [Pg.615]

Since the initially formed enol ester rearranges slowly to an imide,3 the yield depends on the rate at which the isoxazolium salt reacts, and that rate is increased by vigorous stirring. The reaction time for the activation step is approximately 8 minutes in nitromethane at 25° and approximately 1 hour in acetonitrile at 0°. In reactions performed with acetonitrile as the solvent, the checkers did not obtain complete solution. The reaction flask should be kept in a water bath to minimize heat transfer from the magnetic stirrer to the reaction mixture. [Pg.90]

Hurley and Testa (Ref 17) exposed nitrobenzene in isopropyl alcohol, degassed and in air, to a mercury lamp at 3660A Products in the absence of air were acetone and phenyl-hydroxylamine (PHA). In air PHA was oxidized to nitro sob enzene which couples with PHA to form azoxybenzene. They hypothesized that the triplet molecule abstracted H-atoms from the solvent no effect was noted with ben zene as solvent. They also worked with nitrobenzene in isopropyl alcohol-water mixts containing HC1 with a mercury lamp at 3660A (Ref 18), and found that the quantum yields depended on pH and isopropyl alcohol content, but were independent of oxygen with acid present. Their conclusion was that the quantum yield consisted of two parts, H abstraction by the triplet, and protonation of the triplet... [Pg.736]

Similar results are obtained from incineration of polymeric materials with octabromo- and pentabromodiphenyl ether (refs. 11,12). The temperature with the maximum PBDF-yield depends on the kind of polymeric matrix. All three bromo ethers 1-2 give the same isomer distribution pattern with preference for tetrabrominated dibenzofiirans. The overall yield of PBDF is lower for incineration of pentabromobiphenyl ether 2, 4 % at 700°C compared to 29 % for ether 1 at 500 °C (ref. 12). The preferred formation of tetrabrominated fiirans observed at all temperatures cannot be a result of thermodynamic control of the cyclisation reaction it is likely due to the special geometry of the furnaces. One explanation is that a spontaneous reaction occurs at approximately 400°C while the pyrolysis products are transferred to the cooler zones of the reactor details can be found elsewhere (ref. 12). [Pg.372]

It was observed that this technique was able to produce microparticles with a mean diameter of approximately 10.17 + 3.02 pm in a reasonable to satisfactory yield depending on the formulation. This value was observed to be higher for the polymer weight ratio of 1 3 (87.00 + 4.25 %), which indicates that ESIOO improves the final result of the spray-drying process. According to the SEM analysis, the polymeric microparticles were shown to be quite similar in shape. Regardless of the formulation, they appeared to be mostly concave and asymmetric (Figure 12). [Pg.75]

Burgess followed a similar strategy for the preparation of the salts 8 (Scheme 7). On that occasion several routes to mono-N-substituted imidazoles were explored yielding the desired compoimds in variable yields depending on the nature of the amines. The chirality was introduced via alkylating reagents 9 bearing chiral oxazolines [15]. [Pg.198]

The relative product yields depend on the CHa to Cl ratio on the surface. In the studies reported here, this ratio has been adjusted to 1 1 (consistent with the CHa Cl stoichiometry in CHaCl) on the basis of a Cl(181 eV) C(272 eV) Auger peak ratio of 6.5 which is the same as that measured for physisorbed monolayers of dimethyldichlorosilane. Monolayer coverages of CHa + Cl having 1 1 stoichiometry were obtained by a 20 L exposure from the methyl radical source (approximately sahiration coverage) followed by a 9.5 L dose of CI2. [Pg.309]

The ethylene selectivity (Fig. 5) and thus the ethylene yield depend strongly on the adsorbent mass (Fig. 5). For fixed catalyst mass, oxygen supply I/2F and methane conversion there is an optimal amount of adsorbent for maximizing ethylene selectivity and yield (Fig. 5). Excessive amounts of adsorbent cause quantitative trapping of ethane and thus a decrease in ethylene yield according to the above reaction network. This shows the important synergy between the catalytic and adsorbent units which significantly affects the product distribution and yield. [Pg.392]

A NHC-Cu complex 9 has also been used in the cyclopropanation of 5 and cyclooctene 8 using EDA 6 (Scheme 5.3) [5]. Complex 9 was isolated prior to use and, as in the case of NHC-Ru complex, the cyclopropanation reaction did not display high diastereoselectivity. However, products 7 and 10 were obtained in good to excellent yields depending on the ratio between the alkenes and EDA. Improved yields were obtained when alkenes were used in six- or ten-fold excess. [Pg.133]

Allyl p-tolyl sulphoxide 535 reacts with sodium methoxide in methanol by initial prototropic isomerization and subsequent addition of methanol to give 536 (equation 333). Protic solvents are photochemically incorporated by the open chain olefinic bond of trans methyl )S-styryl sulphoxide 537 in a Markovnikov regiospecificity (equation 334). Mercaptanes and thiophenols add to vinyl sulphoxides in a similar manner (compare also Reference 604 and Section IV.B.3) to give fi-alkylthio(arylthio)ethyl sulphoxides 538 (equation 335). Addition of deuteriated thio-phenol (PhSD) to optically active p-tolyl vinyl sulphoxide is accompanied by a low asymmetric a-induction not exceeding 10% (equation 336) . Addition of amines to vinyl sulphoxides proceeds in the same way giving )S-aminoethyl sulphoxides in good to quantitative yields depending on the substituents at the vinyl moiety When optically active p-tolyl vinyl sulphoxides are used in this reaction, diastereoisomeric mixtures are always formed and asymmetric induction at the p- and a-carbon atoms is 80 20 (R = H, R = Me) and 1.8 1 (R = Me, R = H), respectively (equation 337) ... [Pg.351]

Sterically bulky 3,3 substituents reduced the enantioselectivity, while coordination between La and O atoms of ortho-substituents improved ees. 6,6 -diphenyl-BI-NOL gave the best results (69% ee for para-tolualdehyde) it was proposed that the phenyl substituents affected the Lewis acidity of the catalyst via electronic effects. With this catalyst, ee and yield depended strongly on solvent, THE being the most... [Pg.161]


See other pages where Yield dependence is mentioned: [Pg.200]    [Pg.270]    [Pg.45]    [Pg.357]    [Pg.291]    [Pg.517]    [Pg.367]    [Pg.309]    [Pg.89]    [Pg.240]    [Pg.416]    [Pg.473]    [Pg.9]    [Pg.217]    [Pg.2]    [Pg.277]    [Pg.61]    [Pg.151]    [Pg.298]    [Pg.351]    [Pg.194]    [Pg.230]    [Pg.19]    [Pg.554]    [Pg.539]    [Pg.862]    [Pg.134]    [Pg.344]    [Pg.298]    [Pg.142]   
See also in sourсe #XX -- [ Pg.366 ]




SEARCH



© 2024 chempedia.info