Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfur physical properties

Anhydrous aluminum triduotide, A1F., is a white crystalline soHd. Physical properties are Hsted ia Table 2. Aluminum duotide is spatingly soluble ia water (0.4%) and iasoluble ia dilute mineral acids as well as organic acids at ambient temperatures, but when heated with concentrated sulfuric acid, HF is hberated, and with strong alkah solutions, aluminates are formed. A1F. is slowly attacked by fused alkahes with the formation of soluble metal duotides and aluminate. A series of double salts with the duotides of many metals and with ammonium ion can be made by precipitation or by soHd-state reactions. [Pg.141]

Physical Properties. Sulfur tetrafluoride has the stmcture of a distorted trigonal bipyramid, the sulfur having hybrid sp d orbitals and an unshared electron pair (93). The FSF bond angles have been found to be 101° and 187°, and the bond distances 0.1646 and 0.1545 nm (94). [Pg.243]

Thiothionyl Fluoride and Difluorodisulfane. Thiothionyl fluoride [1686-09-9] S=SF2, and difluorodisulfane [13709-35-8] FSSF, are isomeric compounds which may be prepared as a mixture by the action of various metal fluorides on sulfur vapor or S2CI2 vapor. Chemically, the two isomers are very similar and extremely reactive. However, in the absence of catalytic agents and other reactive species, FSSF is stable for days at ordinary temperatures and S=SF2 may be heated to 250°C without significant decomposition (127). Physical properties of the two isomers are given in Table 6. The microwave spectmm of S=SF2 has been reported (130). [Pg.244]

The physical properties of the principal constituents of natural gas are Hsted in Table 5. These gases are odorless, but for safety reasons, natural gas is odorized before distribution to provide a distinct odor to warn users of possible gas leaks in equipment. Sulfur-containing compounds such as organic mercaptans, aUphatic sulfides, and cycHc sulfur compounds are effective odorants at low concentrations and are added to natural gas at levels ranging from 4 to 24mg/m. ... [Pg.170]

The concentrated mother Hquor contains a large amount of sulfuric acid in a free form, as titanium oxy-sulfate, and as some metal impurity sulfates. To yield the purest form of hydrated TiOg, the hydrolysis is carried out by a dding crystallizing seeds to the filtrate and heating the mixture close to its boiling temperature, - 109° C. The crystal stmcture of the seeds (anatase or mtile) and their physical properties affect the pigmentary characteristics of the final product. [Pg.8]

Reactions of the Disulfide Group. Besides the thiol end groups, the disulfide bonds also have a marked influence on both the chemical and physical properties of the polysulftde polymers. One of the key reactions of disulfides is nucleophilic attack on sulfur (eq. 4). The order of reactivity for various thiophiles has been reported as (C2H O) P > R, HS , C2H5 S- >C,H,S- >C,H,P,... [Pg.457]

A polysulfone is characterized by the presence of the sulfone group as part of its repeating unit. Polysulfones may be aUphatic or aromatic. AUphatic polysulfones (R and are alkyl groups) were synthesized by radical-induced copolymerization of olefins and sulfur dioxide and characterized many years ago. However, they never demonstrated significant practical utiUty due to their relatively unattractive physical properties, not withstanding the low cost of their raw materials (1,2). The polysulfones discussed in this article are those based on an aromatic backbone stmcture. The term polysulfones is used almost exclusively to denote aromatic polysulfones. [Pg.460]

Vulcanization was first reported in 1839 with the discovery that heating natural mbber with sulfur and basic lead carbonate produced an improvement in physical properties (2). In 1906, aniline was the first organic compound found to have the abiUty to accelerate the reaction of sulfur with natural mbber (3). Various derivatives of aniline were soon developed which were less toxic and possessed increased acceleration activity. [Pg.219]

Conventional cure systems use relatively high levels (2.5 + phr) of sulfur combkied with lower levels of accelerator(s). These typically provide high initial physical properties, tensile and tear strengths, and good initial fatigue life, but with a greater tendency to lose these properties after heat aging. [Pg.238]

In contrast, the EV cure systems employ much lower levels of free sulfur (0.1—1.0 phr) or they use sulfur donors such as TMTD or DTDM combkied with higher accelerator levels. The short mono- and disulfide cross-links that form often do not exhibit the excellent physical properties of the conventional systems but they do retain thek properties much better after aging. [Pg.238]

Sulfosahcyhc acid is prepared by heating 10 parts of sahcyhc acid with 50 parts of concentrated sulfuric acid, by chlorosulfonation of sahcyhc acid and subsequent hydrolysis of the acid chloride, or by sulfonation with hquid sulfur trioxide in tetrachloroethylene. It is used as an intermediate in the production of dyestuffs, grease additives, catalysts, and surfactants. It is also useful as a colorimetric reagent for ferric iron and as a reagent for albumin. Table 9 shows the physical properties of sahcyhc acid derivatives. [Pg.290]

Inorganic Compounds. Inorganic selenium compounds are similar to those of sulfur and tellurium. The most important inorganic compounds are the selenides, haUdes, oxides, and oxyacids. Selenium oxidation states are —2, 0, +1, +2, +4, and +6. Detailed descriptions of the compounds, techniques, and methods of preparation, and references to original work are available (1—3,5,6—10, 51—54). Some important physical properties of inorganic selenium compounds are Hsted in Table 3. [Pg.331]

Divinylbenzene. This is a specialty monomer used primarily to make cross-linked polystyrene resins. Pure divinylbenzene (DVB) monomer is highly reactive polymericaHy and is impractical to produce and store. Commercial DVB monomer (76—79) is generally manufactured and suppHed as mixtures of m- and -divinylbenzenes and ethylvinylbenzenes. DVB products are designated by commercial grades in accordance with the divinylbenzene content. Physical properties of DVB-22 and DVB-55 are shown in Table 10. Typical analyses of DVB-22 and DVB-55 are shown in Table 11. Divinylbenzene [1321 -74-0] is readily polymerized to give britde insoluble polymers even at ambient temperatures. The product is heavily inhibited with TBC and sulfur to minimize polymerization and oxidation. [Pg.489]

The physical properties of elemental sulfur can be modified by its reaction with various organic and inorganic compounds. Many of the resulting sulfur products tend to have properties similar to paving asphalt (49,50). [Pg.126]

Physical Properties. Sulfur monochloride [10025-67-9] S2CI2, is a yeUow-orange Hquid with a characteristic pungent odor. It was first discovered as a chlorination product of sulfur in 1810. Table 5 provides a Hst of the physical properties. [Pg.137]

Physical Properties. Sulfuryl chloride [7791-25-5] SO2CI2, is a colorless to light yellow Hquid with a pungent odor. Physical and thermodynamic properties are Hsted ia Table 7. Sulfuryl chloride dissolves sulfur dioxide, bromine, iodine, and ferric chloride. Various quaternary alkyl ammonium salts dissolve ia sulfuryl chloride to produce highly conductive solutions. Sulfuryl chloride is miscible with acetic acid and ether but not with hexane (193,194). [Pg.142]

Physical Properties. Sulfur dioxide [7446-09-5] SO2, is a colorless gas with a characteristic pungent, choking odor. Its physical and thermodynamic properties ate Hsted in Table 8. Heat capacity, vapor pressure, heat of vaporization, density, surface tension, viscosity, thermal conductivity, heat of formation, and free energy of formation as functions of temperature ate available (213), as is a detailed discussion of the sulfur dioxide—water system (215). [Pg.143]

Physical Properties. Sodium metabisulfite (sodium pyrosulfite, sodium bisulfite (a misnomer)), Na2S20, is a white granular or powdered salt (specific gravity 1.48) and is storable when kept dry and protected from air. In the presence of traces of water it develops an odor of sulfur dioxide and in moist air it decomposes with loss of part of its SO2 content and by oxidation to sodium sulfate. Dry sodium metabisulfite is more stable to oxidation than dry sodium sulfite. At low temperatures, sodium metabisulfite forms hydrates with 6 and 7 moles of water. The solubiHty of sodium metabisulfite in water is 39.5 wt % at 20°C, 41.6 wt % at 40°C, and 44.6 wt % at 60°C (340). Sodium metabisulfite is fairly soluble in glycerol and slightly soluble in alcohol. [Pg.149]

Physical Properties. Ammonium thiocyanate [1762-95-4] NH SCN, is a hygroscopic crystalline soHd which deHquesces at high humidities (375,376). It melts at 149°C with partial isomerization to thiourea. It is soluble in water to the extent of 65 wt % at 25°C and 77 wt % at 60°C. It is also soluble to 35 wt % in methanol and 20 wt % in ethanol at 25°C. It is highly soluble in Hquid ammonia and Hquid sulfur dioxide, and moderately soluble in acetonitrile. [Pg.151]

Data on chemical properties such as self-dissociation constants for sulfuric and dideuterosulfuric acid (60,65,70,71), as well as an excellent graphical representation of physical property data of 100% H2SO4 (72), are available in the Hterature. Critical temperatures of sulfuric acid solutions are presented in Figure 10 (73). [Pg.179]

Descriptions of sulfuric acid analytical procedures not specified by ASTM are available (32,152). Federal specifications also describe the requited method of analysis. Concentrations of 78 wt % and 93 wt % H2SO4 are commonly measured indirectly by determining specific gravity. Higher acid concentrations are normally determined by titration with a base, or by sonic velocity or other physical property for plant control. Sonic velocity has been found to be quite accurate for strength analysis of both filming and nonfuming acid. [Pg.192]

Table 2. Chemical and Physical Properties of Sulfurized and Sulfurchlorinated Unsaturated Compounds and Mercaptans... Table 2. Chemical and Physical Properties of Sulfurized and Sulfurchlorinated Unsaturated Compounds and Mercaptans...
The level of technical service support provided for a given product generally tracks in large part where the suppHer considers thek product to be located within the spectmm of commodity to specialty chemicals. Technical service support levels for pure chemicals usually provided in large quantities for specific synthetic or processing needs, eg, ammonia (qv), sulfuric acid (see SuLFURic ACID AND SULFURTRIOXIDe), formaldehyde (qv), oxygen (qv), and so forth, are considerably less than for more complex materials or blends of materials provided for multistep downstream processes. Examples of the latter are many polymers, colorants, flocculants, impact modifiers, associative thickeners, etc. For the former materials, providing specifications of purity and physical properties often comprises the full extent of technical service requked or expected by customers. These materials are termed undifferentiated chemicals (9),... [Pg.377]

Further heating to 440—500°C gives sodium sulfide and sulfur dioxide (33). Table 1. Physical Properties of Sodium Thiosulfate Pentahydrate... [Pg.28]

In bulk form cerium is a reactive metal that has a high affinity for oxygen and sulfur. It has a face centered cubic crystal stmcture, mp 798°C, bp 3443°C, density 6.77 g/mL, and a metallic radius of 182 pm. Detailed chemical and physical property information can be found in the Hterature (1,2). [Pg.365]

Properties. The physical properties of the mustards are summarized in Table 1. The sulfur mustards are only slightly soluble in water, whereas the nitrogen mustards are slightly soluble at neutral pH, but form water-soluble salts under acid conditions. Both sulfur and nitrogen mustards are extremely soluble in most organic solvents. [Pg.398]


See other pages where Sulfur physical properties is mentioned: [Pg.82]    [Pg.82]    [Pg.208]    [Pg.240]    [Pg.243]    [Pg.244]    [Pg.248]    [Pg.69]    [Pg.70]    [Pg.356]    [Pg.2]    [Pg.115]    [Pg.164]    [Pg.457]    [Pg.235]    [Pg.256]    [Pg.539]    [Pg.84]    [Pg.95]    [Pg.115]    [Pg.139]    [Pg.198]    [Pg.423]    [Pg.368]    [Pg.369]    [Pg.27]   
See also in sourсe #XX -- [ Pg.685 , Pg.687 ]

See also in sourсe #XX -- [ Pg.52 ]

See also in sourсe #XX -- [ Pg.162 ]

See also in sourсe #XX -- [ Pg.908 ]

See also in sourсe #XX -- [ Pg.52 ]

See also in sourсe #XX -- [ Pg.685 , Pg.687 ]

See also in sourсe #XX -- [ Pg.435 , Pg.877 , Pg.879 , Pg.880 , Pg.883 , Pg.884 ]

See also in sourсe #XX -- [ Pg.134 ]

See also in sourсe #XX -- [ Pg.134 ]

See also in sourсe #XX -- [ Pg.26 , Pg.43 , Pg.493 , Pg.1013 , Pg.1015 , Pg.1016 , Pg.1019 , Pg.1020 , Pg.1021 , Pg.1022 ]

See also in sourсe #XX -- [ Pg.1047 ]

See also in sourсe #XX -- [ Pg.26 , Pg.44 , Pg.549 , Pg.1126 , Pg.1128 , Pg.1129 , Pg.1132 , Pg.1133 , Pg.1134 , Pg.1135 ]

See also in sourсe #XX -- [ Pg.123 ]




SEARCH



Physical Properties of Sulfuric Acid

Sulfur color, physical property

Sulfur dioxide physical properties

Sulfur hexafluoride physical properties

Sulfur ligands physical properties

Sulfur mustard agents, physical/chemical properties

Sulfur properties

Sulfur tetrafluoride physical properties

Sulfur trioxide physical properties

Sulfuric acid physical properties

© 2024 chempedia.info