Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfuric acid physical properties

P-parinaric acid, physical properties, 5 33t P-pentenoic acid, physical properties, 5 3 It P-peroxylactones, 18 484 Beta phase titanium, 24 838 in alloys, 24 854-856 properties of, 24 840, 941 P-phellandrene, 24 493 P-picoline, 21 110 from acrolein, 1 276 uses for, 21 120 P-pinene, 3 230 24 496-497 major products from, 24 478 /-menthol from, 24 522 as natural precursor for aroma chemicals, 3 232 terpenoids from, 24 478-479 P-propiolactone, polymerization of, 14 259 P-quartz solid solution, 12 637—638 Beta ratio, in filtration, 11 329—330 Beta (P) rays, 21 285 P-scission reactions, 14 280-281 P-skytanthine, 2 101 P-spodumene solid solution, 12 638-639 P-sulfur trioxide, 23 756 P-sultones, 23 527 P-tocopherol, 25 793 P-tocotrienol, 25 793 P-vinylacrylic acid, physical properties, 5 33t... [Pg.97]

In this chapter, some of these uses are explored in greater detail. Goodyear and Hancock in 1847 discovered that, when natural rubber was heated with a small amount of sulfur, the physical properties of the resultant rubber were improved the material became tougher and more resistant to changes in temperature. This process of vulcanisation is also useful for the treatment of synthetic rubbers, and as well as sulfur, many sulfur donors such as symmetrical diphenylthiourea, tetraalkylthiuram disulfides (1) and 2-mercaptobenzothia-zole (2) (Figure 1) can be used.1 These compounds act as accelerators of the process of polymerisation of the diene monomers in synthetic rubbers for this purpose, the additional presence of zinc oxide and preferably a carboxylic acid, e.g. stearic acid, is required. [Pg.221]

Sulfuric acid and fluorosulfonic acid Physical properties of sulfuric acid... [Pg.245]

Anhydrous aluminum triduotide, A1F., is a white crystalline soHd. Physical properties are Hsted ia Table 2. Aluminum duotide is spatingly soluble ia water (0.4%) and iasoluble ia dilute mineral acids as well as organic acids at ambient temperatures, but when heated with concentrated sulfuric acid, HF is hberated, and with strong alkah solutions, aluminates are formed. A1F. is slowly attacked by fused alkahes with the formation of soluble metal duotides and aluminate. A series of double salts with the duotides of many metals and with ammonium ion can be made by precipitation or by soHd-state reactions. [Pg.141]

The concentrated mother Hquor contains a large amount of sulfuric acid in a free form, as titanium oxy-sulfate, and as some metal impurity sulfates. To yield the purest form of hydrated TiOg, the hydrolysis is carried out by a dding crystallizing seeds to the filtrate and heating the mixture close to its boiling temperature, - 109° C. The crystal stmcture of the seeds (anatase or mtile) and their physical properties affect the pigmentary characteristics of the final product. [Pg.8]

Sulfosahcyhc acid is prepared by heating 10 parts of sahcyhc acid with 50 parts of concentrated sulfuric acid, by chlorosulfonation of sahcyhc acid and subsequent hydrolysis of the acid chloride, or by sulfonation with hquid sulfur trioxide in tetrachloroethylene. It is used as an intermediate in the production of dyestuffs, grease additives, catalysts, and surfactants. It is also useful as a colorimetric reagent for ferric iron and as a reagent for albumin. Table 9 shows the physical properties of sahcyhc acid derivatives. [Pg.290]

Physical Properties. Sulfuryl chloride [7791-25-5] SO2CI2, is a colorless to light yellow Hquid with a pungent odor. Physical and thermodynamic properties are Hsted ia Table 7. Sulfuryl chloride dissolves sulfur dioxide, bromine, iodine, and ferric chloride. Various quaternary alkyl ammonium salts dissolve ia sulfuryl chloride to produce highly conductive solutions. Sulfuryl chloride is miscible with acetic acid and ether but not with hexane (193,194). [Pg.142]

Data on chemical properties such as self-dissociation constants for sulfuric and dideuterosulfuric acid (60,65,70,71), as well as an excellent graphical representation of physical property data of 100% H2SO4 (72), are available in the Hterature. Critical temperatures of sulfuric acid solutions are presented in Figure 10 (73). [Pg.179]

Descriptions of sulfuric acid analytical procedures not specified by ASTM are available (32,152). Federal specifications also describe the requited method of analysis. Concentrations of 78 wt % and 93 wt % H2SO4 are commonly measured indirectly by determining specific gravity. Higher acid concentrations are normally determined by titration with a base, or by sonic velocity or other physical property for plant control. Sonic velocity has been found to be quite accurate for strength analysis of both filming and nonfuming acid. [Pg.192]

The level of technical service support provided for a given product generally tracks in large part where the suppHer considers thek product to be located within the spectmm of commodity to specialty chemicals. Technical service support levels for pure chemicals usually provided in large quantities for specific synthetic or processing needs, eg, ammonia (qv), sulfuric acid (see SuLFURic ACID AND SULFURTRIOXIDe), formaldehyde (qv), oxygen (qv), and so forth, are considerably less than for more complex materials or blends of materials provided for multistep downstream processes. Examples of the latter are many polymers, colorants, flocculants, impact modifiers, associative thickeners, etc. For the former materials, providing specifications of purity and physical properties often comprises the full extent of technical service requked or expected by customers. These materials are termed undifferentiated chemicals (9),... [Pg.377]

Properties. The physical properties of the mustards are summarized in Table 1. The sulfur mustards are only slightly soluble in water, whereas the nitrogen mustards are slightly soluble at neutral pH, but form water-soluble salts under acid conditions. Both sulfur and nitrogen mustards are extremely soluble in most organic solvents. [Pg.398]

Molybdenum hexafluoride. 3,1412 Molybdenum-iron-sulfur complexes, 4,241 Molybdenum oxide amino acid formation prebiotic systems, 6, 872 Molybdenum storage protein microorganisms, 6, 681 Molybdenum telluride, 3, 1431 Molybdenum tetraalkoxides physical properties, 2, 347 Molybdenum tribromide, 3,1330 Molybdenum trichloride, 3,1330 Molybdenum trifluoride, 3, 1330 Molybdenum trihalides, 3, 1330 bond lengths, 3, 1330 magnetic moments, 3,1330 preparation, 3,1330 properties, 3, 1330 structure, 3,1330 Molybdenum triiodide, 3,1330 Molybdenum trioxide complexes, 3, 1379 Molybdenum triselenide, 3, 143)... [Pg.170]

Bayne, Fewster and Mitchell16 prepared VII by the method of Stacey and Turton, and recorded physical properties closely agreeing with those reported by Maurer.66 The compound was clearly related to D-glucosone, prepared from D-glucose phenylosazone and by direct oxidation, since, on treatment with dry acetone containing concentrated sulfuric acid, it gave crystalline tri-0-isopropylidene-(2-hydroxy-D-arabmo-hexose). 7... [Pg.56]

As has been suggested in the previous section, explanations of solvent effects on the basis of the macroscopic physical properties of the solvent are not very successful. The alternative approach is to make use of the microscopic or chemical properties of the solvent and to consider the detailed interaction of solvent molecules with their own kind and with solute molecules. If a configuration in which one or more solvent molecules interacts with a solute molecule has a particularly low free energy, it is feasible to describe at least that part of the solute-solvent interaction as the formation of a molecular complex and to speak of an equilibrium between solvated and non-solvated molecules. Such a stabilization of a particular solute by solvation will shift any equilibrium involving that solute. For example, in the case of formation of carbonium ions from triphenylcarbinol, the equilibrium is shifted in favor of the carbonium ion by an acidic solvent that reacts with hydroxide ion and with water. The carbonium ion concentration in sulfuric acid is greater than it is in methanol-... [Pg.93]


See other pages where Sulfuric acid physical properties is mentioned: [Pg.107]    [Pg.282]    [Pg.1614]    [Pg.1248]    [Pg.107]    [Pg.282]    [Pg.107]    [Pg.282]    [Pg.1881]    [Pg.208]    [Pg.248]    [Pg.69]    [Pg.70]    [Pg.356]    [Pg.115]    [Pg.256]    [Pg.95]    [Pg.189]    [Pg.198]    [Pg.423]    [Pg.27]    [Pg.85]    [Pg.979]    [Pg.2451]    [Pg.1]    [Pg.33]    [Pg.249]    [Pg.231]    [Pg.891]    [Pg.199]    [Pg.34]    [Pg.106]    [Pg.27]   
See also in sourсe #XX -- [ Pg.2 , Pg.4 ]

See also in sourсe #XX -- [ Pg.368 ]

See also in sourсe #XX -- [ Pg.2 , Pg.4 ]

See also in sourсe #XX -- [ Pg.218 , Pg.222 ]

See also in sourсe #XX -- [ Pg.240 , Pg.245 , Pg.246 ]

See also in sourсe #XX -- [ Pg.273 , Pg.279 , Pg.279 ]




SEARCH



Acid physical properties

Physical Properties of Sulfuric Acid

Sulfur physical properties

Sulfur properties

Sulfuric acid properties

© 2024 chempedia.info