Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Selective neutrality

The aqueous sodium naphthenate phase is decanted from the hydrocarbon phase and treated with acid to regenerate the cmde naphthenic acids. Sulfuric acid is used almost exclusively, for economic reasons. The wet cmde naphthenic acid phase separates and is decanted from the sodium sulfate brine. The volume of sodium sulfate brine produced from dilute sodium naphthenate solutions is significant, on the order of 10 L per L of cmde naphthenic acid. The brine contains some phenolic compounds and must be treated or disposed of in an environmentally sound manner. Sodium phenolates can be selectively neutralized using carbon dioxide and recovered before the sodium naphthenate is finally acidified with mineral acid (29). Recovery of naphthenic acid from aqueous sodium naphthenate solutions using ion-exchange resins has also been reported (30). [Pg.511]

Fig. 1. Survey of the ions and selected neutral compounds which can presently be determined with the help of ion-selective electrodes... Fig. 1. Survey of the ions and selected neutral compounds which can presently be determined with the help of ion-selective electrodes...
MS/MS The acquisition and study of the spectra of the electrically charged products or precursors of m/z selected ion or ions, or of precursor ions of a selected neutral mass loss. Also termed tandem mass spectrometry. [Pg.7]

The fourth type of mediator-based cation optical sensing is using potential sensitive dye and a cation selective ionophore doped in polymer membrane. Strong fluorophores, e.g. Rhodamine-B C-18 ester exhibits differences in fluorescence intensity because of the concentration redistribution in membranes. PVC membranes doped with a potassium ionophore, can selectively extract potassium into the membrane, and therefore produce a potential at the membrane/solu-tion interface. This potential will cause the fluorescent dye to redistribute within the membrane and therefore changes its fluorescence intensity. Here, the ionophore and the fluorescence have no interaction, therefore it can be applied to develop other cation sensors with a selective neutral ionophore. [Pg.768]

Several papers have been devoted to the detection of toxic metal ions. Some of the probes developed for toxic metals include a selective neutral ionophore for lead... [Pg.206]

H. Ouadid-Ahidouch, and J. M. Garcia Fernandez, Synthesis of N-, S-, and C-glycoside castanosper-mine analogues with selective neutral a-glucosidase inhibitory activity as antitumour agents, Chem. Commun., 46 (2010) 5328-5330. [Pg.296]

Structure, Nomenclature, and Abbreviations of Some Selected, Neutral Glycosphingolipids... [Pg.241]

Ozretich RJ, Schroeder WP. 1986. Determination of selected neutral priority pollutants in marine sediment, tissue, and reference materials utilizing bonded-phase sorbents. Anal. Chem. 58 2041-2048. [Pg.103]

Fig. 4. Transport selectivity Kjj and potentiometric selectivity Kj j of a Na+-selective neutral carrier membrane using ligand 11. Experimental coefficients fCNaM obtained with (2) and (11) respectively given for different cations M. Membrane composition 32wt.% polyvinyl chloride, 65 wt.% dibutyl sebacate, 3wt.% carrier //. Thickness of membrane = 100 p.m. Current density approx. 0.1 p.Amm 2. Fig. 4. Transport selectivity Kjj and potentiometric selectivity Kj j of a Na+-selective neutral carrier membrane using ligand 11. Experimental coefficients fCNaM obtained with (2) and (11) respectively given for different cations M. Membrane composition 32wt.% polyvinyl chloride, 65 wt.% dibutyl sebacate, 3wt.% carrier //. Thickness of membrane = 100 p.m. Current density approx. 0.1 p.Amm 2.
Fig. 6. Transport selectivity and potentiometric selectivity of a Ca2 selective neutral carrier membrane (3 wt.% carrier 10, 65 wt.% o-nitrophenyl-octyl ether, 32wt.% polyvinyl chloride). Experimental selectivity coefficients KCaNa obtained with (16) and (18), respectively, as a function of the cationic concentration m (in moles/liter). Fig. 6. Transport selectivity and potentiometric selectivity of a Ca2 selective neutral carrier membrane (3 wt.% carrier 10, 65 wt.% o-nitrophenyl-octyl ether, 32wt.% polyvinyl chloride). Experimental selectivity coefficients KCaNa obtained with (16) and (18), respectively, as a function of the cationic concentration m (in moles/liter).
The analogous Z aryl triflate 19.1 reacts under the cationic manifold to give, ultimately, oxindole (/ )-17.3a in 72% yield and 43-48% ee (Scheme 8G.19) [38]. An important synthetic advance is the observation that Heck cyclization of this substrate could be diverted to the more selective neutral pathway by addition of halide salts. For example, Heck cyclization of triflate 19.1 in the presence of 1 equiv. of n-Bu4NI gave (/ )-17.3a in 62% yield and 90% ee, which is similar to the enantioselectivity obtained for cyclization of the corresponding iodide 18.1c under neutral conditions (see entry 6, Table 8G, 1). Conversely, cyclization of iodide 18.1c in the... [Pg.690]

Figure 11. The error threshold of replication and mutation in genotype space. Asexually reproducing populations with sufficiently accurate replication and mutation, approach stationary mutant distributions which cover some region in sequence space. The condition of stationarity leads to a (genotypic) error threshold. In order to sustain a stable population the error rate has to be below an upper limit above which the population starts to drift randomly through sequence space. In case of selective neutrality, i.e. the case of equal replication rate constants, the superiority becomes unity, Om = 1, and then stationarity is bound to zero error rate, pmax = 0. Polynucleotide replication in nature is confined also by a lower physical limit which is the maximum accuracy which can be achieved with the given molecular machinery. As shown in the illustration, the fraction of mutants increases with increasing error rate. More mutants and hence more diversity in the population imply more variability in optimization. The choice of an optimal mutation rate depends on the environment. In constant environments populations with lower mutation rates do better, and hence they will approach the lower limit. In highly variable environments those populations which approach the error threshold as closely as possible have an advantage. This is observed for example with viruses, which have to cope with an immune system or other defence mechanisms of the host. Figure 11. The error threshold of replication and mutation in genotype space. Asexually reproducing populations with sufficiently accurate replication and mutation, approach stationary mutant distributions which cover some region in sequence space. The condition of stationarity leads to a (genotypic) error threshold. In order to sustain a stable population the error rate has to be below an upper limit above which the population starts to drift randomly through sequence space. In case of selective neutrality, i.e. the case of equal replication rate constants, the superiority becomes unity, Om = 1, and then stationarity is bound to zero error rate, pmax = 0. Polynucleotide replication in nature is confined also by a lower physical limit which is the maximum accuracy which can be achieved with the given molecular machinery. As shown in the illustration, the fraction of mutants increases with increasing error rate. More mutants and hence more diversity in the population imply more variability in optimization. The choice of an optimal mutation rate depends on the environment. In constant environments populations with lower mutation rates do better, and hence they will approach the lower limit. In highly variable environments those populations which approach the error threshold as closely as possible have an advantage. This is observed for example with viruses, which have to cope with an immune system or other defence mechanisms of the host.
The variables xt denote the frequencies of the genotypes Ij (i = 1,. . . , V and Z-li Xj = 1) in the population. The superiority of the master sequence thus is always larger than one (am >1) except in the case of selective neutrality, = f2 =. . . = /N =/, where we have om = 1 (see forthcoming sections). A larger value of the superiority implies that lower accuracy of replication can be tolerated. Alternatively, longer sequences can be replicated at constant replication accuracy without losing stationarity of the quasispecies. Although the model that has been used in the derivation of the molecular quasispecies is rather simple, the results are also representative for replication and mutation in real populations. [Pg.186]

Figure 12. The error threshold of replication and mutation in phenotype space. The genotypic error threshold approaches zero in the case of selective neutrality. Despite changing genotypes a phenotype may be conserved in evolution whenever it has higher fitness than the other phenotypes in the population. The concept of error threshold can easily be extended to competition between phenotypes. The distribution of phenotypes is stationary provided the error rate does not exceed the maximum value pmax which is a function of the mean fraction of nearest neighbors, X, and the superiority of the master phenotype, a. The illustration shows the position of the phenotypic error threshold in the X, p plane. Selective neutrality allows more errors to be tolerated and pmax increases accordingly with increasing X. If X approaches the inverse superiority, X — a-1, the tolerated error may grow to pmax = 1, and this means the phenotype will never be lost, no matter how many errors are made in replication. Figure 12. The error threshold of replication and mutation in phenotype space. The genotypic error threshold approaches zero in the case of selective neutrality. Despite changing genotypes a phenotype may be conserved in evolution whenever it has higher fitness than the other phenotypes in the population. The concept of error threshold can easily be extended to competition between phenotypes. The distribution of phenotypes is stationary provided the error rate does not exceed the maximum value pmax which is a function of the mean fraction of nearest neighbors, X, and the superiority of the master phenotype, a. The illustration shows the position of the phenotypic error threshold in the X, p plane. Selective neutrality allows more errors to be tolerated and pmax increases accordingly with increasing X. If X approaches the inverse superiority, X — a-1, the tolerated error may grow to pmax = 1, and this means the phenotype will never be lost, no matter how many errors are made in replication.
Kimura, M. (1983). The Neutral Theory of Evolution. Cambridge University Press, Cambridge, U.K. King, J.L. Jukes, T.H. (1969). Non-Darwinian evolution Random fixation of selectively neutral variants. Science 164, 788-798. [Pg.198]

TABLE 3.3 Electron Affinities and Ionization Potentials for Selected Neutral Atoms... [Pg.51]

In oxidation and dehydrogenation correlations were found with the redox properties of the solid. In the decomposition of nitrous oxide the paramagnetic properties, and with them, the catalytic activity, of organic polymers could be changed at will by modifications in the polymer structure, and in acid catalysis activity could be regulated by changing the type of acidic group and by selective neutralization. [Pg.31]


See other pages where Selective neutrality is mentioned: [Pg.434]    [Pg.302]    [Pg.475]    [Pg.260]    [Pg.79]    [Pg.210]    [Pg.412]    [Pg.433]    [Pg.88]    [Pg.202]    [Pg.238]    [Pg.239]    [Pg.423]    [Pg.267]    [Pg.267]    [Pg.267]    [Pg.311]    [Pg.1275]    [Pg.195]    [Pg.199]    [Pg.611]    [Pg.622]    [Pg.73]    [Pg.179]    [Pg.188]    [Pg.189]    [Pg.189]    [Pg.189]    [Pg.193]    [Pg.194]    [Pg.194]    [Pg.253]    [Pg.335]   


SEARCH



Carbon black selective neutralization

Mutation selectively neutral

Neutral drift, selection compared

Neutralizing agent selection

Selection mutation, selectively neutral

Selective neutrality mutations

Selective neutralization, sodium

Selective neutralization, sodium carbonate

Surface groups selective neutralization

© 2024 chempedia.info