Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfoxide, dimethyl preparation

Oxidation of 7-hydroxy- and 7-aryl-5-oxo-2,3-dihydro-5//-pyrido[l,2,3- f< ]-l,4-benzothiazine-6-carboxylates and 6-carboxamides with 3-chloroper-oxybenzoic acid in CH2CI2 yielded sulfoxides and sulfones, depending on the molar ratio of the substrate and oxidizing agent (00MIP7). A sulfoxide was prepared by the oxidation of ethyl (3S)-3-methyl-10-(2,6-dimethyl-4-pyridyl)-7-oxo-2,3-dihydro-7//-pyrido[l,2,3-<7c]-l,4-benzothiazine-6-carbox-ylate (OOMIPIO). [Pg.293]

A 1.5 to 2 M solution of methylsulfinyl carbanion in dimethyl sulfoxide is prepared under nitrogen as above from sodium hydride and dry dimethyl sulfoxide. An equal volume of dry tetrahydrofuran is added and the solution is cooled in an ice bath during the addition, with stirring, of the ester (0.5 equivalent for each 1 equivalent of carbanion neat if liquid, or dissolved in dry tetrahydrofuran if solid) over a period of several minutes. The ice bath is removed and stirring is continued for 30 minutes. The reaction mixture is then poured into three times its volume of water, acidified with aqueous hydrochloric acid to a pH of 3-4 (pH paper), and thoroughly extracted with chloroform. The combined extracts are washed three times with water, dried over anhydrous sodium sulfate, and evaporated to yield the jS-ketosulfoxide as a white or pale yellow crystalline solid. The crude product is triturated with cold ether or isopropyl ether and filtered to give the product in a good state of purity. [Pg.94]

A fluorous analogue of DMSO has been used to perform Swern reactions [24], This widely used method of oxidizing an alcohol to an aldehyde falls down seriously from the environmental point of view due to its production of a stoichiometric amount of dimethyl sulfide. Here, a fluorous sulfoxide is prepared and used in the oxidation of several alcohols in dichloromethane, as shown in Scheme 9.12. After reaction, the sulfide is extracted into perfluorohexane and the system recycled. Unfortunately, extraction from dichloromethane was found to be difficult, but replacing the dichloromethane with toluene leads to a more efficient recovery. [Pg.189]

Research Focus Preparation of photosensitive adamantane resins for use in photoresists. Originality This is the first example of using dimethyl sulfoxide to prepare 3-... [Pg.551]

Biotinylation solution 10 mAf solution of the activated biotin in dimethyl sulfoxide (DMSO). Prepare this mixture always fresh before use. [Pg.51]

Dimethyl sulfoxide is prepared by air oxidation of dimethyl sulfide in the presence of nitrogen oxides. It can also be obtained as a by-product of wood pulp manufacture for the paper and allied industries. [Pg.251]

Itraconazole is a triazole with a broad spectrum of activity against filamentous fungi it is particularly effective against Aspergillus spp. Lack of availability of a formulation suitable for topical ophthalmic use may be a problem. A noncommercial, 1% itraconazole-30% dimethyl sulfoxide ointment preparation used topically in trials in the northeastern USA was found to be effective in 8 out of 10 horses with keratomycosis (Ball et al 1997). It may be given orally, at 3 mg/kg twice daily, in conjunction with topical administration, but it is expensive. [Pg.231]

Omura, K., Swern, D. Oxidation of alcohols by "activated dimethyl sulfoxide. A preparative steric and mechanistic study. Tetrahedron 1978, 34, 1651-1660. [Pg.652]

OTHER COMMENTS used in the manufacture of isobutyl esters, which serve as plasticizers and in perfumes useful in the manufacture of esters for fruit flavoring essences solvent in paint, varnish removers, surface coatings, and adhesives chemical intermediate for isobu-tylamines, isobutylacetate and methacrylate esters used with dimethyl sulfoxide to prepare food additives such as sucrose fatty acid esters. [Pg.687]

According to Chen et al. [31], the porous substrate membrane is prepared in the following way. A solution of polyethersulfone (Victrex 200P) polymer in dimethyl sulfoxide is prepared (21 to 26 wt% polymer) and cast onto polyethylene backing cloth, to the thickness of 254 Then, the cast membrane is gelled in ice cold water for 1 h. [Pg.55]

Mancuso, A. J. Swern, D. Activated Dimethyl Sulfoxide Useful Reagents for Synthesis Synthesis 1981,165-185. Mancuso, A. J. Brownfain, D. S. Swern, D. Structure of the Dimethyl Sulfoxide-Oxalyl Chloride Reaction Product. Oxidation of Heteroaromatic and Diverse Alcohols to Carbonyl Compounds /. Org. Chem. 1979, 44, 4148-4150. Mancuso, A. J. Huang, S-L. Swern, E. Oxidation of Long-Chain and Related Alcohols to Carbonyls by Dimethyl Sulfoxide Activated by Oxalyl Chloride J. Org. Chem. 1978, 45, 2480-2482. Omura, K. Swern, D. Oxidation of Alcohols by Activated Dimethyl Sulfoxide. A Preparative Steric and Mechanistic Study Tetrahedron 1978, 54, 1651-1660. [Pg.436]

CeUulose triacetate is insoluble in acetone, and other solvent systems are used for dry extmsion, such as chlorinated hydrocarbons (eg, methylene chloride), methyl acetate, acetic acid, dimethylformamide, and dimethyl sulfoxide. Methylene chloride containing 5—15% methanol or ethanol is most often employed. Concerns with the oral toxicity of methylene chloride have led to the recent termination of the only triacetate fiber preparation faciHty in the United States, although manufacture stiH exists elsewhere in the world (49). [Pg.296]

The preparation of fluoroaromatics by the reaction of KF with perhaloaromatics, primarily hexachloroben2ene, has received considerable attention. Two methods were developed and include either the use of an aprotic, polar solvent, such as /V-methy1pyrro1idinone (8), or no solvent (9). These methods plus findings that various fluoroaryl derivatives are effective fungicides (10) prompted development of a commercial process for the production of polyfluoroben2enes (11). The process uses a mixture of sodium and potassium fluorides or potassium fluoride alone in aprotic, polar solvents such as dimethyl sulfoxide or sulfolane. [Pg.267]

Chemiluminescence is also obtained by anionic autooxidation of (41) with oxygen ia alkaline dimethyl sulfoxide (DMSO) (216). Qc has been reported to be 10% and ketone (43) and CO2 are obtained. Several analogues of luciferin have been prepared that are also chemiluminescent when they react with oxygen ia alkaline DMSO (62). [Pg.272]

Trilialophenols can be converted to poly(dihaloph.enylene oxide)s by a reaction that resembles radical-initiated displacement polymerization. In one procedure, either a copper or silver complex of the phenol is heated to produce a branched product (50). In another procedure, a catalytic quantity of an oxidizing agent and the dry sodium salt in dimethyl sulfoxide produces linear poly(2,6-dichloro-l,4-polyphenylene oxide) (51). The polymer can also be prepared by direct oxidation with a copper—amine catalyst, although branching in the ortho positions is indicated by chlorine analyses (52). [Pg.330]

I itro-DisplacementPolymerization. The facile nucleophilic displacement of a nitro group on a phthalimide by an oxyanion has been used to prepare polyetherimides by heating bisphenoxides with bisnitrophthalimides (91). For example with 4,4 -dinitro monomers, a polymer with the Ultem backbone is prepared as follows (92). Because of the high reactivity of the nitro phthalimides, the polymerkation can be carried out at temperatures below 75°C. Relative reactivities are nitro compounds over halogens, Ai-aryl imides over A/-alkyl imides, and 3-substituents over 4-substituents. Solvents are usually dipolar aprotic Hquids such as dimethyl sulfoxide, and sometimes an aromatic Hquid is used, in addition. [Pg.333]

Naphthalene sodium prepared in dimethyl ether or another appropriate solvent, or metallic sodium dissolved in Hquid ammonia or dimethyl sulfoxide, is used to treat polyfluorocarbon and other resins to promote adhesion (138—140). Sodium, usually in dispersed form, is used to desulfurize a variety of hydrocarbon stocks (141). The process is most useful for removal of small amounts of sulfur remaining after hydrodesulfurization. [Pg.169]

Low DS starch acetates ate manufactured by treatment of native starch with acetic acid or acetic anhydride, either alone or in pyridine or aqueous alkaline solution. Dimethyl sulfoxide may be used as a cosolvent with acetic anhydride to make low DS starch acetates ketene or vinyl acetate have also been employed. Commercially, acetic anhydride-aqueous alkaU is employed at pH 7—11 and room temperature to give a DS of 0.5. High DS starch acetates ate prepared by the methods previously detailed for low DS acetates, but with longer reaction time. [Pg.345]

Vinyl chloride reacts with sulfides, thiols, alcohols, and oximes in basic media. Reaction with hydrated sodium sulfide [1313-82-2] in a mixture of dimethyl sulfoxide [67-68-5] (DMSO) and potassium hydroxide [1310-58-3], KOH, yields divinyl sulfide [627-51-0] and sulfur-containing heterocycles (27). Various vinyl sulfides can be obtained by reacting vinyl chloride with thiols in the presence of base (28). Vinyl ethers are produced in similar fashion, from the reaction of vinyl chloride with alcohols in the presence of a strong base (29,30). A variety of pyrroles and indoles have also been prepared by reacting vinyl chloride with different ketoximes or oximes in a mixture of DMSO and KOH (31). [Pg.414]

It is prepared from the polycondensation of the disodium salt of bisphenol A and 4,4-dichlorodiphenyl sulfone in a polar aprotic solvent such as dimethyl sulfoxide (26). [Pg.39]

Cl Vat Blue 4 is prepared from 2-arniaoaiitliraquiQoiie (66) by potash fusion in the presence of an oxidising agent such as sodium nitrite or air. An alternative method by dimerization of 1-aminoanthraquinone (17) by using such solvents as dimethyl sulfoxide or tetramethylurea has been reported, and improved methods for this reaction have been cited (135—138). These methods are considered to be advantageous in terms of the yield as well as the availability of starting compounds. [Pg.329]

Other methods for the preparation of cyclohexanecarboxaldehyde include the catalytic hydrogenation of 3-cyclohexene-1-carboxaldehyde, available from the Diels-Alder reaction of butadiene and acrolein, the reduction of cyclohexanecarbonyl chloride by lithium tri-tcrt-butoxy-aluminum hydride,the reduction of iV,A -dimethylcyclohexane-carboxamide with lithium diethoxyaluminum hydride, and the oxidation of the methane-sulfonate of cyclohexylmethanol with dimethyl sulfoxide. The hydrolysis, with simultaneous decarboxylation and rearrangement, of glycidic esters derived from cyclohexanone gives cyclohexanecarboxaldehyde. [Pg.15]

NaBH4 is soluble in water, alcohols, pyridine, dioxane, dimethoxyethane, diglyme and triglyme. All these solvents, as well as aqueous tetrahydrofuran and aqueous dimethylformamide, have been used for reductions. The reductions go very slowly in di- and triglyme so these solvents are not suitable for preparative work. In some reductions in dry pyridine and dry dimethyl sulfoxide, reaction only takes place on aqueous work-up. This... [Pg.64]

Isotope labeling by derivative formation with deuterated reagents is useful for the preparation of analogs such as dg-acetonides, da-acetates, da-methyl ethers, dg-methyl esters, etc. The required reagents are either commercially available or can be easily prepared. (The preparation of da-methyl iodide is described in section IX-F. Various procedures are reported in the literature for the preparation of dg-acetone, da-diazometh-ane57.i63.i73 and da-acetyl chloride. ) These reactions can be carried out under the usual conditions and they need no further discussion. A convenient procedure has been reported for the da-methylation of sterically hindered or hydrogen bonded phenolic hydroxyl functions by using da-methyl iodide and sodium hydroxide in dimethyl sulfoxide solution. This procedure should be equally applicable to the preparation of estradiol da-methyl ether derivatives. [Pg.211]

The recovered dg-dimethyl sulfoxide may be recycled to prepare additional deuteriomethyl iodide or purified for use as a reagent by gentle warming with a little solid sodium thiosulfate followed by distillation from barium oxide. Both products show 99% deuteration. ... [Pg.215]

Androst-4-ene-3,17-dione. Testosterone (0.58 g, 2 mmoles) is dissolved in a solution prepared from 3 ml of benzene, 3 ml of dimethyl sulfoxide, 0.16 ml (2 mmoles) of pyridine and 0.08 ml (1 mmole) of trifluoroacetic acid. After addition of 1.24 g (6 mmoles) of dicyclohexylcarbodiimide, the sealed reaction flask is kept overnight at room temperature. Ether (50 ml) is added followed by a solution of 0.54 g (6 mmoles) of oxalic acid in 5 ml of methanol. After gas evolution has ceased ( 30 min) 50 ml of water is added and the insoluble dicyclohexylurea is removed by filtration. The organic phase is then extracted twice with 5 % sodium bicarbonate and once with water, dried over sodium sulfate and evaporated to a crystalline residue (0.80 g) which still contains a little dicyclohexylurea. Direct crystallization from 5 ml of ethanol gives androst-4-ene-3,17-dione (0.53 g, 92%) in two crops, mp 169-170°. [Pg.239]

Base-catalyzed proton abstraction from trimethylsulfoxonium halides (1) with formation of dimethylsufoxonium methylide (2) was described by Corey in 1962. Solutions of (2) in dimethyl sulfoxide are conveniently prepared from the chloride or iodide (1) by stirring with one equivalent of sodium hydride at room temperature. [Pg.113]

Extension of the above method to 3-methoxyestra-3,5(10)-dien-17-one 17-ethylene ketal (46) prepared by base-catalyzed isomerization of 3-methoxy-estra-2,5(10)-dien-17-one 17-ketal (42) with potassium t-butoxide in dimethyl sulfoxide gives the isomeric tropone A-homo-estra-l,4,5(10)-triene-3,17-dione... [Pg.369]

The preparation of 2,6-difluoropyridine in 97% yield from 2,6-dichloropyridine can be accomplished at lower temperatures (150 °C) by using a catalytic amount of tetramethylammonium chloride in dimethyl sulfoxide containing less than 1% water [66]... [Pg.191]

The S >ern oxidation is a preparatively important reaction which allows for the oxidation of primary and secondary alcohols 1 to aldehydes and ketones 2, respectively, under mild conditions, using activated dimethyl sulfoxide (DMSO) as the oxidizing agent. [Pg.275]

Methylsulfinyl carbanion (dimsyl ion) is prepared from 0.10 mole of sodium hydride in 50 ml of dimethyl sulfoxide under a nitrogen atmosphere as described in Chapter 10, Section III. The solution is diluted by the addition of 50 ml of dry THF and a small amount (1-10 mg) of triphenylmethane is added to act as an indicator. (The red color produced by triphenylmethyl carbanion is discharged when the dimsylsodium is consumed.) Acetylene (purified as described in Chapter 14, Section I) is introduced into the system with stirring through a gas inlet tube until the formation of sodium acetylide is complete, as indicated by disappearance of the red color. The gas inlet tube is replaced by a dropping funnel and a solution of 0.10 mole of the substrate in 20 ml of dry THF is added with stirring at room temperature over a period of about 1 hour. In the case of ethynylation of carbonyl compounds (given below), the solution is then cautiously treated with 6 g (0.11 mole) of ammonium chloride. The reaction mixture is then diluted with 500 ml of water, and the aqueous solution is extracted three times with 150-ml portions of ether. The ether solution is dried (sodium sulfate), the ether is removed (rotary evaporator), and the residue is fractionally distilled under reduced pressure to yield the ethynyl alcohol. [Pg.124]

Primary Chlorides Dry sodium cyanide (30 g, 0.61 mole) is added to 150 ml of dimethyl sulfoxide in a flask fitted with a stirrer, reflux condenser, dropping funnel, and thermometer. The thick slurry is heated on a steam bath to 90° and the steam bath is then removed. The halide (0.5 mole of monochloride or 0.25 mole of dichloride) is slowly added to the stirred mixture, causing the temperature to increase immediately. The rate of addition should be adjusted so that the temperature of the reaction does not go above about 160°. After all the halide is added (about 10 minutes) the mixture is stirred for 10 minutes more, or until the temperature drops below 50°. In the preparation of mononitriles, the reaction mixture is then poured into water, and the product is extracted with chloroform or ether. The extract is washed several times with saturated sodium chloride solution then dried over calcium chloride, and the product is distilled. [Pg.140]


See other pages where Sulfoxide, dimethyl preparation is mentioned: [Pg.145]    [Pg.564]    [Pg.617]    [Pg.217]    [Pg.134]    [Pg.230]    [Pg.326]    [Pg.336]    [Pg.341]    [Pg.251]    [Pg.444]    [Pg.27]    [Pg.106]    [Pg.107]   
See also in sourсe #XX -- [ Pg.8 , Pg.45 ]

See also in sourсe #XX -- [ Pg.8 , Pg.45 ]

See also in sourсe #XX -- [ Pg.8 , Pg.45 ]




SEARCH



Dimethyl preparation

Sulfoxides dimethyl

Sulfoxides dimethyl sulfoxide

Sulfoxides preparation

© 2024 chempedia.info