Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sucrose Solubility

Excipient Sweetness compared to sucrose Solubility (as a ratio of weight or volume in relative amount of water) Incompatibility Side effect... [Pg.160]

There is another anomaly to be considered. In nearly all of the nonelectrolyte solubility data that have been subjected to analysis according to eq. [5.5.23] the solute solubility increases as X2, the organic cosolvent concentration, increases, and gA is positive, the physically reasonable result. But in the sucrose-water-ethanol system, the sucrose solubility decreases as Xj increases, and gA is negative. There appears to be no physically reasonable picture of a negative gA value. [Pg.299]

Information given sucrose solubility at 100°C (487 g/100 g water) composition of solution sucrose (139 g), water (33.0 g)... [Pg.19]

It is found in lichens and in some algae. It has m.p. 120 C, is very soluble in water and is about twice as sweet as sucrose. It is a reference compound upon which the erythro nomenclature is based. [Pg.162]

D-fructose, C HijOo. Crystallizes in large needles m.p. 102-104 C. The most eommon ketose sugar. Combined with glucose it occurs as sucrose and rafftnose mixed with glucose it is present in fruit juices, honey and other products inulin and levan are built of fructose residues only. In natural products it is always in the furanose form, but it crystallizes in the pyranose form. It is very soluble in... [Pg.182]

Action of sodium hydroxide. Boil about 0 2 g. of glucose with 5 of 10% NaOH solution the mixture turns yellow, then brown, and emits the odour of caramel. Fructose, maltose, lactose and soluble starch behave similarly sucrose and ordinary starch do not give colorations. [Pg.367]

Brown resinous product formed. Aliphatic aldehydes (except formaldehyde) carbohydrates and soluble starch (sucrose and ordinary starch only faintly coloured). [Pg.407]

Disaccharides, e.g., lactose, which yield galactose upon hydrolysis, will also give the sparingly-soluble mucic acid but in poorer 3deld. This reaction may be employed for the differentiation between certain disaccharides lactose — mucic + saccharic acids sucrose — saccharic acid only maltose — saccharic acid only. [Pg.453]

Spray Drying. Spray-dry encapsulation processes (Fig. 7) consist of spraying an intimate mixture of core and shell material into a heated chamber where rapid desolvation occurs to thereby produce microcapsules (24,25). The first step in such processes is to form a concentrated solution of the carrier or shell material in the solvent from which spray drying is to be done. Any water- or solvent-soluble film-forming shell material can, in principle, be used. Water-soluble polymers such as gum arable, modified starch, and hydrolyzed gelatin are used most often. Solutions of these shell materials at 50 wt % soHds have sufficiently low viscosities that they stiU can be atomized without difficulty. It is not unusual to blend gum arable and modified starch with maltodextrins, sucrose, or sorbitol. [Pg.321]

Catalytic oxidation ia the presence of metals is claimed as both nonspecific and specific for the 6-hydoxyl depending on the metals used and the conditions employed for the oxidation. Nonspecific oxidation is achieved with silver or copper and oxygen (243), and noble metals with bismuth and oxygen (244). Specific oxidation is claimed with platinum at pH 6—10 ia water ia the presence of oxygen (245). Related patents to water-soluble carboxylated derivatives of starch are Hoechst s on the oxidation of ethoxylated starch and another on the oxidation of sucrose to a tricarboxyhc acid. AH the oxidations are specific to primary hydroxyls and are with a platinum catalyst at pH near neutraUty ia the presence of oxygen (246,247). Polysaccharides as raw materials ia the detergent iadustry have been reviewed (248). [Pg.483]

A commercially interesting low calorie fat has been produced from sucrose. Proctor Gamble has patented a mixture of penta- to octafatty acid ester derivatives of sucrose under the brand name Olestra. It was approved by the FDA in January 1996 for use as up to 100% replacement for the oil used in preparing savory snacks and biscuits. Olestra, a viscous, bland-tasting Hquid insoluble in water, has an appearance and color similar to refined edible vegetable oils. It is basically inert from a toxicity point of view as it is not metabolized or absorbed. It absorbs cholesterol (low density Hpoprotein) and removes certain fat-soluble vitamins (A, D, E, and K). Hence, Olestra has to be supplemented with these vitamins. No standard LD q tests have been performed on Olestra however, several chronic and subchronic studies were performed at levels of 15% in the diet, and no evidence of toxicity was found. No threshold limit value (TLV), expressed as a maximum exposure per m of air, has been estabhshed, but it is estimated to be similar to that of an inert hpid material at 5 mg/m. ... [Pg.33]

Pure D-fmctose is a white, hygroscopic, crystalline substance and should not be confused with the high fmctose com symps (HFCS) which may contain 42—90 wt % fmctose and 23—29% water (8,9). The nonfmctose part of these symps is glucose (dextrose) plus small amounts of glucose oligomers and polymers. Fmctose is highly soluble ia water at 20°C it is 79% soluble, compared with only 47% for glucose and 67% for sucrose. [Pg.44]

Alitame (trade name Adame) is a water-soluble, crystalline powder of high sweetness potency (2000X, 10% sucrose solution sweetness equivalence). The sweet taste is clean, and the time—intensity profile is similar to that of aspartame. Because it is a stericaHy hindered amide rather than an ester, ahtame is expected to be more stable than aspartame. At pH 2 to 4, the half-life of aUtame in solution is reported to be twice that of aspartame. The main decomposition pathways (Fig. 6) include conversion to the unsweet P-aspartic isomer (17) and hydrolysis to aspartic acid and alanine amide (96). No cyclization to diketopiperazine or hydrolysis of the alanine amide bond has been reported. AUtame-sweetened beverages, particularly colas, that have a pH below 4.0 can develop an off-flavor which can be avoided or minimized by the addition of edetic acid (EDTA) [60-00-4] (97). [Pg.280]

Chlorophyll b [519-62-0] M 907.52, sinters at 86-92 , sinters at 170 , dec at 160-170 , m 183-185 , 190-195 , [alj, -267 (Me2CO + McOH), [a] j-133 (McOH + Pyridine 95 5). See purification of chlorophyll a, and is separated from "a" by chromatography on sucrose [UV, IR Stoll and Weidemann Helv Chim Acta 42 679, 681 7959]. It forms red-black hexagonal bipyramids or four sided plates from dilute EtOH and has been recrystd from CHCl3-MeOH. It is soluble in MeOH, EtOH, EtOAc and insoluble in pet ether. [J Am Chem Soc 88 5037 1966.]... [Pg.167]

The shape of the equilibrium line, or solubility curve, is important in determining the mode of crystallization to be employed in order to crystallize a particular substance. If the curve is steep, i.e. the substance exhibits a strong temperature dependence of solubility (e.g. many salts and organic substances), then a cooling crystallization might be suitable. But if the metastable zone is wide (e.g. sucrose solutions), addition of seed crystal might be necessary. This can be desirable, particularly if a uniformly sized product is required. If on the other hand, the equilibrium line is relatively flat (e.g. for aqueous common salt... [Pg.61]

Various strains of oral streptococci produce D-glucosyltransferases which utilize sucrose as a o-glucosyl donor in the production of soluble and insoluble D-glucans. Consequently, it may be expected that some deoxyfluoro derivatives of sucrose function as competitive inhibitors for the dextransu-crases of tooth bacteria, thus preventing decay, or at least may be used as active-site probes for the enzymes. Another aim of these researches is to find non-metabolizable sweeteners. [Pg.214]

Some disaccharides serve as soluble energy sources for animals and plants, whereas others are important because they are intermediates in the decomposition of polysaccharides. A major energy source for humans is sucrose, which is common table sugar. Sucrose contains a-glucose linked to j6-fructose. About 80 million tons of sucrose are produced each year. Of that, 60% comes from sugar cane and 40% comes from sugar beets. Example treats a disaccharide that is an energy source for insects. [Pg.925]


See other pages where Sucrose Solubility is mentioned: [Pg.278]    [Pg.366]    [Pg.49]    [Pg.132]    [Pg.118]    [Pg.278]    [Pg.366]    [Pg.49]    [Pg.132]    [Pg.118]    [Pg.80]    [Pg.376]    [Pg.419]    [Pg.297]    [Pg.300]    [Pg.370]    [Pg.4]    [Pg.21]    [Pg.45]    [Pg.386]    [Pg.167]    [Pg.354]    [Pg.121]    [Pg.17]    [Pg.17]    [Pg.20]    [Pg.209]    [Pg.134]    [Pg.130]    [Pg.838]    [Pg.42]    [Pg.159]    [Pg.589]    [Pg.596]    [Pg.112]   
See also in sourсe #XX -- [ Pg.234 , Pg.234 ]

See also in sourсe #XX -- [ Pg.294 ]

See also in sourсe #XX -- [ Pg.744 ]

See also in sourсe #XX -- [ Pg.234 , Pg.234 ]

See also in sourсe #XX -- [ Pg.227 ]

See also in sourсe #XX -- [ Pg.425 ]




SEARCH



© 2024 chempedia.info