Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Substance aerosolized

Colloids are stable mixtures in which particles of rather large sizes (ranging from 1 nm to p,m) are dispersed throughout another substance. Aerosol (liquid droplets or solid particles dispersed in a gas) such as fog can scatter a beam of light (Tyndall effect). [Pg.103]

To examine a sample by inductively coupled plasma mass spectrometry (ICP/MS) or inductively coupled plasma atomic-emission spectroscopy (ICP/AES), it must be transported into the flame of a plasma torch. Once in the flame, sample molecules are literally ripped apart to form ions of their constituent elements. These fragmentation and ionization processes are described in Chapters 6 and 14. To introduce samples into the center of the plasma flame, they must be transported there as gases or finely dispersed droplets of a solution or as fine particulate matter (aerosol). The various methods of sample introduction are described here in three parts — A, B, and C Chapters 15, 16, and 17 — to cover gases, solutions (liquids), and solids. Some types of sample inlets are multipurpose and can be used with gases and liquids or with liquids and solids, but others have been designed specifically for only one kind of analysis. However, the principles governing the operation of inlet systems fall into a small number of categories. This chapter deals specifically with substances that are normally solids at ambient temperatures. [Pg.109]

The previous discussion has centered on how to obtain as much molecular mass and chemical structure information as possible from a given sample. However, there are many uses of mass spectrometry where precise isotope ratios are needed and total molecular mass information is unimportant. For accurate measurement of isotope ratio, the sample can be vaporized and then directed into a plasma torch. The sample can be a gas or a solution that is vaporized to form an aerosol, or it can be a solid that is vaporized to an aerosol by laser ablation. Whatever method is used to vaporize the sample, it is then swept into the flame of a plasma torch. Operating at temperatures of about 5000 K and containing large numbers of gas ions and electrons, the plasma completely fragments all substances into ionized atoms within a few milliseconds. The ionized atoms are then passed into a mass analyzer for measurement of their atomic mass and abundance of isotopes. Even intractable substances such as glass, ceramics, rock, and bone can be examined directly by this technique. [Pg.284]

Ha2ards encountered with tungsten may be caused by substances associated with the production and use of tungsten, eg. As, Sb, Pb, and other impurities in tungsten ores, Co aerosols and dust in the carbide industry, and thoria used in welding electrodes. Lanthanum is being promoted as a substitute for thoria in this appHcation. [Pg.285]

Deposition. The products of the various chemical and physical reactions in the atmosphere are eventually returned to the earth s surface. Usually, a useful distinction is made here between wet and dry deposition. Wet deposition, ie, rainout and washout, includes the flux of all those components that are carried to the earth s surface by rain or snow, that is, those dissolved and particulate substances contained in rain or snow. Dry deposition is the flux of particles and gases, especially SO2, FINO, and NFl, to the receptor surface during the absence of rain or snow. Deposition can also occur through fog, aerosols and droplets which can be deposited on trees, plants, or the ground. With forests, approximately half of the deposition of SO(, NH+,andH+ occurs as dry deposition. [Pg.213]

Filter P per Processing. In the fabrication of fuel oil and air filters for vehicles such as motorcycles and diesel locomotives, heat processing of the filter paper is required to cure the resin (usually phenoHc) with which the paper (qv) is impregnated (see Phenolic resins). The cure-oven exhaust, which contains water vapor, alcohols, and dimers and trimers of phenol, produces a typical blue haze aerosol having a pungent odor. The concentration of organic substances in the exhaust is usually rather low. [Pg.515]

When a liquid or solid substance is emitted to the air as particulate matter, its properties and effects may be changed. As a substance is broken up into smaller and smaller particles, more of its surface area is exposed to the air. Under these circumstances, the substance, whatever its chemical composition, tends to combine physically or chemically with other particles or gases in the atmosphere. The resulting combinations are frequently unpredictable. Very small aerosol particles (from 0.001 to 0.1 Im) can act as condensation nuclei to facilitate the condensation of water vapor, thus promoting the formation of fog and ground mist. Particles less than 2 or 3 [Lm in size (about half by weight of the particles suspended in urban air) can penetrate the mucous membrane and attract and convey harmful chemicals such as sulfur dioxide. In order to address the special concerns related to the effects of very fine, iuhalable particulates, EPA replaced its ambient air standards for total suspended particulates (TSP) with standards for particlute matter less than 10 [Lm in size (PM, ). [Pg.2173]

The existing variety of means and methods of micro-element analysis is used worldwide for the determination of element contents in atmospheric aerosols when they ai e collected at aspiration filters, sediment and natural surfaces and biota objects where toxic substances migration can be observed. [Pg.77]

In connection with a variety of disinsectants formulations (aerosols, foams, electric fumigators) on basis of pyrethroids the income of the given substances into air during application is possible as aerosols and as vapors, especially in case of electric fumigators application. [Pg.217]

The toxicity of a substance is its capacity to cause injury once inside the body. The main modes of entry into the body by chemicals in industry are inhalation, ingestion and absorption through the skin. Gases, vapours, mists, dusts, fumes and aerosols can be inhaled and they can also affect the skin, eyes and mucous membranes. Ingestion is rare although possible as a result of poor personal hygiene, subconscious hand-to-mouth contact, or accidents. The skin can be affected directly by contact with the chemicals, even when intact, but its permeability to certain substances also offers a route into the body. Chemicals accorded a skin notation in the list of Occupational Exposure Limits (see Table 5.12) are listed in Table 5.2. Exposure may also arise via skin lesions. [Pg.67]

Preparations packed in aerosol dispensers shall be classified as flammable in accordance with Part III of this schedule. " Substances shall be classified as very toxic, toxic or harmful in accordance with the additional criteria set out in... [Pg.452]

Health effects attributed to sulfur oxides are likely due to exposure to sulfur dioxide, sulfate aerosols, and sulfur dioxide adsorbed onto particulate matter. Alone, sulfur dioxide will dissolve in the watery fluids of the upper respiratory system and be absorbed into the bloodstream. Sulfur dioxide reacts with other substances in the atmosphere to form sulfate aerosols. Since most sulfate aerosols are part of PMj 5, they may have an important role in the health impacts associated with fine particulates. However, sulfate aerosols can be transported long distances through the atmosphere before deposition actually occurs. Average sulfate aerosol concentrations are about 40% of average fine particulate levels in regions where fuels with high sulfur content are commonly used. Sulfur dioxide adsorbed on particles can be carried deep into the pulmonary system. Therefore, reducing concentrations of particulate matter may also reduce the health impacts of sulfur dioxide. Acid aerosols affect respiratory and sensory functions. [Pg.39]

As stated earlier, inhalation is the main route of absorption for occupational exposure to chemicals. Absorption of gaseous substances depends on solubility ifi blood and tissues (as presented in Sections 2.3.3-2.3.5), blood flow, and pulmonary ventilation. Particle size has an important influence on the absorption of aerosols (see Sections 2.3.7 and 3.1.1). [Pg.263]

Diffusion The mixing of substances by molecular motion to equalize a concentration gradient. Applicable to gases, fine aerosols and vapors. (See Brownian diffusion.)... [Pg.1429]

The resultant O3 layer is critically important to life on Earth as a shield against LTV radiation. It also is responsible for the thermal structure of the upper atmosphere and controls the lifetime of materials in the stratosphere. Many substances that are short-lived in the troposphere (e.g. aerosol particles) have lifetimes of a year or more in the stratosphere due to the near-zero removal by precipitation and the presence of the permanent thermal inversion and lack of vertical mixing that it causes. [Pg.138]

Fig. 7-13 Physical transformations of trace substances in the atmosphere. Each box represents a physically and chemically definable entity. The transformations are given in F, (from the ith to the /th box). Q, represents sources contributing to the mass or burden, M,> in the ith box. Rd, and Rw, are dry and wet removals from M,. The dashed box represents what may be called the fine-particle aerosol and could be a single box instead of the set of four sub-boxes (i = 1,2,3,4). The physical transformations are as follows ... Fig. 7-13 Physical transformations of trace substances in the atmosphere. Each box represents a physically and chemically definable entity. The transformations are given in F, (from the ith to the /th box). Q, represents sources contributing to the mass or burden, M,> in the ith box. Rd, and Rw, are dry and wet removals from M,. The dashed box represents what may be called the fine-particle aerosol and could be a single box instead of the set of four sub-boxes (i = 1,2,3,4). The physical transformations are as follows ...

See other pages where Substance aerosolized is mentioned: [Pg.68]    [Pg.148]    [Pg.56]    [Pg.318]    [Pg.338]    [Pg.48]    [Pg.5]    [Pg.68]    [Pg.148]    [Pg.56]    [Pg.318]    [Pg.338]    [Pg.48]    [Pg.5]    [Pg.179]    [Pg.182]    [Pg.135]    [Pg.284]    [Pg.346]    [Pg.271]    [Pg.497]    [Pg.284]    [Pg.369]    [Pg.397]    [Pg.2173]    [Pg.126]    [Pg.8]    [Pg.15]    [Pg.610]    [Pg.160]    [Pg.446]    [Pg.939]    [Pg.107]    [Pg.424]    [Pg.441]    [Pg.446]    [Pg.288]    [Pg.316]    [Pg.155]   
See also in sourсe #XX -- [ Pg.903 ]




SEARCH



© 2024 chempedia.info