Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Subject instrumentation

The first of them to determine the LMA quantitatively and the second - the LF qualitatively Of course, limit of sensitivity of the LF channel depends on the rope type and on its state very close because the LF are detected by signal pulses exceeding over a noise level. The level is less for new ropes (especially for the locked coil ropes) than for multi-strand ropes used (especially for the ropes corroded). Even if a skilled and experienced operator interprets a record, this cannot exclude possible errors completely because of the evaluation subjectivity. Moreover it takes a lot of time for the interpretation. Some of flaw detector producers understand the problem and are intended to develop new instruments using data processing by a computer [6]. [Pg.335]

Having set up the ultrasonic instrument (according to test specifications), the inspector scans the weld volume. Any indications subject to recording are interpreted and documented in a handwritten on-site report. The test report only describes the indications detected by the inspector, but not the completeness of the lest in the sense of a documented 100% volume testing as is the case with X-ray testing. [Pg.774]

Personal Errors Finally, analytical work is always subject to a variety of personal errors, which can include the ability to see a change in the color of an indicator used to signal the end point of a titration biases, such as consistently overestimating or underestimating the value on an instrument s readout scale failing to calibrate glassware and instrumentation and misinterpreting procedural directions. Personal errors can be minimized with proper care. [Pg.60]

Other instrumental advantages include its high sensitivity and a linear mass scale to m/z 10,000 at full sensitivity. The linearity of the mass scale means that it is necessary to calibrate the spectrometer using a single or sometimes two known mass standards. Some calibration is necessary because the start of the mass scale is subject to some instrumental zero offset. The digitized accumulation of spectra provides a better signal-to-noise ratio than can be obtained from one spectrum alone. [Pg.167]

Blood and urine are most often analyzed for alcohol by headspace gas chromatography (qv) using an internal standard, eg, 1-propanol. Assays are straightforward and lend themselves to automation (see Automated instrumentation). Urine samples are collected as a voided specimen, ie, subjects must void their bladders, wait about 20 minutes, and then provide the urine sample. Voided urine samples provide the most accurate deterrnination of blood alcohol concentrations. Voided urine alcohol concentrations are divided by a factor of 1.3 to determine the equivalent blood alcohol concentration. The 1.3 value is used because urine has approximately one-third more water in it than blood and, at equiUbrium, there is about one-third more alcohol in the urine as in the blood. [Pg.486]

Instrumental Interface. Gc/fdr instmmentation has developed around two different types of interfacing. The most common is the on-the-fly or flow cell interface in which gc effluent is dkected into a gold-coated cell or light pipe where the sample is subjected to infrared radiation (see Infrared and raman spectroscopy). Infrared transparent windows, usually made of potassium bromide, are fastened to the ends of the flow cell and the radiation is then dkected to a detector having a very fast response-time. In this light pipe type of interface, infrared spectra are generated by ratioing reference scans obtained when only carrier gas is in the cell to sample scans when a gc peak appears. [Pg.402]

Monitoring by Electromechanical Instrumentation. According to basic engineering principles, no process can be conducted safely and effectively unless instantaneous information is available about its conditions. AH sterilizers are equipped with gauges, sensors (qv), and timers for the measurement of the various critical process parameters. More and more sterilizers are equipped with computerized control to eliminate the possibiUty of human error. However, electromechanical instmmentation is subject to random breakdowns or drifts from caUbrated settings and requires regular preventive maintenance procedures. [Pg.406]

Quite often problems arise when instruments for normal seiwice are subjected to low temperature use. Since some metals become brittle at low temperatures, the instrument hteraUy falls apart. Elastomeric gaskets and seals contract faster with decreasing temperatures than the surrounding metal parts, and the seal often is lost. Even hermetically sealed instruments can develop pin holes or small cracks to permit ciyogenic liqmds to enter these cases with time. Warming the instrument causes the trapped hquid to vaporize, sometimes generating excessive gas pressure and failure of the case. [Pg.1136]

Systematic Measurement Error Fourth, measurements are subject to unknown systematic errors. These result from worn instruments (e.g., eroded orifice plates, improper sampling, and other causes). While many of these might be identifiable, others require confidence in all other measurements and, occasionally, the model in order to identify and evaluate. Therefore, many systematic errors go unnoticed. [Pg.2550]

After the above checks the motor can be subjected to type and routine tests. For testing instruments, the following class and grades aie recommended. [Pg.251]

Equation-of-state measurements add to the scientific database, and contribute toward an understanding of the dynamic phenomena which control the outcome of shock events. Computer calculations simulating shock events are extremely important because many events of interest cannot be subjected to test in the laboratory. Computer solutions are based largely on equation-of-state models obtained from shock-wave experiments which can be done in the laboratory. Thus, one of the main practical purposes of prompt instrumentation is to provide experimental information for the construction of accurate equation-of-state models for computer calculations. [Pg.54]

Further chapters cover in detail the characteristics and applications of galvanic anodes and of cathodic protection rectifiers, including specialized instruments for stray current protection and impressed current anodes. The fields of application discussed are buried pipelines storage tanks tank farms telephone, power and gas-pressurized cables ships harbor installations and the internal protection of water tanks and industrial plants. A separate chapter deals with the problems of high-tension effects on pipelines and cables. A study of costs and economic factors concludes the discussion. The appendix contains those tables and mathematical derivations which appeared appropriate for practical purposes and for rounding off the subject. [Pg.583]

This chapter will cover some of the more common accessory items for compressors such as the lubrication system, gears, coupling, instrumentation, vibration monitoring, and process control. The subject is broad and far-reaching. It is hoped that, for the first-time user, this discussion will be a good introduction and, for the veteran, it may offer another perspective on the subject. [Pg.302]

The subject of vibration instrumentation can fill many pages, but i. only one phase of the world of compressor instrumentation. Therefore the coverage here can only be brief. [Pg.342]

Consider what happens if, for example, an ensemble of carbon atoms is subjected to X rays of 1486.6 eV energy (the usual X-ray source in commercial XPS instruments). A carbon atom has 6 electrons, two each in the Is, 2s, and 2p orbitals, usually written as C Is 2s 2p. The energy level diagram of Figure la represents this electronic structure. The photoelectron process for removing an electron from the... [Pg.284]

Gases for mixing with argon, such as N2 and Xe, have been the subject of study for some time. Some new instrumentation tvill incorporate manifolds for making this process easier. Other plasma developments include microwave-induced plasmas with He to eliminate interferences from argon containing molecular species. [Pg.631]

Another critical instrument specification is the total extra-column dispersion. The subject of extra-column dispersion has already been discussed in chapter 9. It has been shown that the extra-column dispersion determines the minimum column radius and, thus, both the solvent consumption per analysis and the mass sensitivity of the overall chromatographic system. The overall extra-column variance, therefore, must be known and quantitatively specified. [Pg.363]

While this permits more sensitive and accurate reading of concentrations in the 0-to-10% range, this type of instrument is not sufficiently sensitive to give precise indications of concentrations at the TLV of many toxic gases and vapors. In addition, they lack specificity, do not read directly in TLV units (ppm), and are subject to interferences. All combustible gas and vapor indicators are calibrated by the manufacturer using one specific gas or vapor such as methane, and a calibration curve is provided, in percent LEL, for the calibration gas only. [Pg.271]

Selection of Pressure Relief Device - From the range of available pressure rehef valves and other devices, selection is made of the appropriate type for each item of equipment subject to overpressure. Instrumentation, check valves, and similar devices are generally not acceptable as means of overpressure protection. [Pg.121]

In addition to failure as a result of their utihty supply, items of equipment are subject to individual failure through mechanical malfunction. Such items include pumps, fans, compressors, mixers, instruments and control valves. The process upset resulting from such malfunctions (e.g., loss of a reflux pump) may in turn result in emergency conditions and the potential for overpressure. These contingencies should be examined and evaluated. [Pg.130]

Mass spectrometer (MS) An instrument that identifies substances by causing them to be ionized and subjecting the resulting ions to a strong electromagnetic field. [Pg.1457]


See other pages where Subject instrumentation is mentioned: [Pg.322]    [Pg.203]    [Pg.318]    [Pg.406]    [Pg.322]    [Pg.203]    [Pg.318]    [Pg.406]    [Pg.1015]    [Pg.1120]    [Pg.3032]    [Pg.42]    [Pg.573]    [Pg.708]    [Pg.173]    [Pg.408]    [Pg.478]    [Pg.484]    [Pg.2210]    [Pg.2547]    [Pg.112]    [Pg.451]    [Pg.619]    [Pg.219]    [Pg.350]    [Pg.417]    [Pg.573]    [Pg.612]    [Pg.25]    [Pg.330]    [Pg.455]    [Pg.131]    [Pg.268]    [Pg.234]   
See also in sourсe #XX -- [ Pg.116 ]




SEARCH



© 2024 chempedia.info