Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

SUBJECTS chlorides

Can the byproduct be subjected to further reaction and its value upgraded For example, most organic chlorination reactions produce hydrogen chloride as a byproduct. If this cannot be sold, it... [Pg.124]

The acidic properties of sulphonamides and their mono-substitution derivatives are particularly well illustrated in the alkyl ubstitution compounds, which by reason of these properties can be prepared by two distinct methods. Thus mono- and di-ethylamine, when subjected to the Schotten-Baumann reaction using benzenesulphonyl chloride, gi e benzenesulphonethylamide, and bcnzenesulphondiethylamide respectively. These compounds can also... [Pg.248]

Metallic sodium. This metal is employed for the drying of ethers and of saturated and aromatic hydrocarbons. The bulk of the water should first be removed from the liquid or solution by a preliminary drying with anhydrous calcium chloride or magnesium sulphate. Sodium is most effective in the form of fine wire, which is forced directly into the liquid by means of a sodium press (see under Ether, Section II,47,i) a large surface is thus presented to the liquid. It cannot be used for any compound with which it reacts or which is affected by alkalis or is easily subject to reduction (due to the hydrogen evolved during the dehydration), viz., alcohols, acids, esters, organic halides, ketones, aldehydes, and some amines. [Pg.143]

Acetamidothiazole and its 4-alkyl derivatives react with chloro-sulfonic acid. The structure of the resulting products was a subject of controversy (172. 393-397). N-acetyl-A -(2-thiazolyl)-sulfamoyl chlorides (189) first proposed were then shown to be 2-acetamido-5-chloro-sulfonylthiazoles (190) (Scheme 120) (367. 368. 398). the latter assignment is based on infrared (368) and chemical evidence (367). [Pg.75]

Thus ring acylation of phenols is observed under Friedel-Crafts conditions because the presence of aluminum chloride causes that reaction to be subject to thermodynamic (equi librium) control... [Pg.1006]

The direct reaction of other alkyl chlorides, such as butyl chloride, results in unacceptably low overall product yields along with the by-product butene resulting from dehydrochlorination. AH alkyl haHdes having a hydrogen atom in a P- position to the chlorine atom are subject to this complication. [Pg.547]

Among nonmetallic materials, glass, chemical stoneware, enameled steel, acid-proof brick, carbon, graphite, and wood are resistant to iodine and its solutions under suitable conditions, but carbon and graphite may be subject to attack. Polytetrafluoroethylene withstands Hquid iodine and its vapor up to 200°C although it discolors. Cloth fabrics made of Saran, a vinyHdene chloride polymer, have lasted for several years when used in the filtration of iodine recovered from oil-weU brines (64). [Pg.364]

Example of an HACCP System. The HACCP system can be used to ensure production of a safe cooked, sHced turkey breast with gravy, which has been vacuum packaged in a flexible plastic pouch and subjected to a final heat treatment prior to distribution (37). Raw turkey breasts are trimmed, then injected with a solution containing sodium chloride and sodium phosphate. Next, the meat is placed into a tumbler. After tumbling, the meat is stuffed into a casing, placed onto racks, and moved into a cook tank, where it is cooked to an internal temperature of at least 71.1°C (160°F). After... [Pg.33]

Electrolytic Preparation of Chlorine and Caustic Soda. The preparation of chlorine [7782-50-5] and caustic soda [1310-73-2] is an important use for mercury metal. Since 1989, chlor—alkali production has been responsible for the largest use for mercury in the United States. In this process, mercury is used as a flowing cathode in an electrolytic cell into which a sodium chloride [7647-14-5] solution (brine) is introduced. This brine is then subjected to an electric current, and the aqueous solution of sodium chloride flows between the anode and the mercury, releasing chlorine gas at the anode. The sodium ions form an amalgam with the mercury cathode. Water is added to the amalgam to remove the sodium [7440-23-5] forming hydrogen [1333-74-0] and sodium hydroxide and relatively pure mercury metal, which is recycled into the cell (see Alkali and chlorine products). [Pg.109]

Enzymatic hydrolysis is also used for the preparation of L-amino acids. Racemic D- and L-amino acids and their acyl-derivatives obtained chemically can be resolved enzymatically to yield their natural L-forms. Aminoacylases such as that from Pispergillus OTj e specifically hydrolyze L-enantiomers of acyl-DL-amino acids. The resulting L-amino acid can be separated readily from the unchanged acyl-D form which is racemized and subjected to further hydrolysis. Several L-amino acids, eg, methionine [63-68-3], phenylalanine [63-91-2], tryptophan [73-22-3], and valine [72-18-4] have been manufactured by this process in Japan and production costs have been reduced by 40% through the appHcation of immobilized cell technology (75). Cyclohexane chloride, which is a by-product in nylon manufacture, is chemically converted to DL-amino-S-caprolactam [105-60-2] (23) which is resolved and/or racemized to (24)... [Pg.311]

Ferrous Sulfdte Titration. For deterrnination of nitric acid in mixed acid or for nitrates that are free from interferences, ferrous sulfate titration, the nitrometer method, and Devarda s method give excellent results. The deterrnination of nitric acid and nitrates in mixed acid is based on the oxidation of ferrous sulfate [7720-78-7] by nitric acid and may be subject to interference by other materials that reduce nitric acid or oxidize ferrous sulfate. Small amounts of sodium chloride, potassium bromide, or potassium iodide may be tolerated without serious interference, as can nitrous acid up to 50% of the total amount of nitric acid present. Strong oxidizing agents, eg, chlorates, iodates, and bromates, interfere by oxidizing the standardized ferrous sulfate. [Pg.47]

Analytical and Test Methods. o-Nitrotoluene can be analyzed for purity and isomer content by infrared spectroscopy with an accuracy of about 1%. -Nitrotoluene content can be estimated by the decomposition of the isomeric toluene diazonium chlorides because the ortho and meta isomers decompose more readily than the para isomer. A colorimetric method for determining the content of the various isomers is based on the color which forms when the mononitrotoluenes are dissolved in sulfuric acid (45). From the absorption of the sulfuric acid solution at 436 and 305 nm, the ortho and para isomer content can be deterrnined, and the meta isomer can be obtained by difference. However, this and other colorimetric methods are subject to possible interferences from other aromatic nitro compounds. A titrimetric method, based on the reduction of the nitro group with titanium(III) sulfate or chloride, can be used to determine mononitrotoluenes (32). Chromatographic methods, eg, gas chromatography or high pressure Hquid chromatography, are well suited for the deterrnination of mononitrotoluenes as well as its individual isomers. Freezing points are used commonly as indicators of purity of the various isomers. [Pg.70]

Kinetics are slow and many hours are requited for a 95% conversion of the reactants. In the case of the subject compound, there is evidence that the reaction is autocatalytic but only when approximately 30% conversion to the product has occurred (19). Reaction kinetics are heavily dependent on the species of halogen ia the alkyl haHde and decrease ia the order I >Br >C1. Tetrabutylphosphonium chloride exhibits a high solubiHty ia a variety of solvents, for example, >80% ia water, >70% ia 2-propanol, and >50% ia toluene at 25°C. Its analogues show similar properties. One of the latest appHcations for this phosphonium salt is the manufacture of readily dyeable polyester yams (20,21). [Pg.319]

Devising an economical method of producing agricultural-grade potassium phosphates from potassium chloride and wet-process phosphoric acid has been the subject of intense agricultural—chemical research (37—39). Limited quantities have been produced industrially. The impact on the overall quantities of phosphoms and potassium compounds consumed by the fertilizer industry is small. Because potassium phosphates are an excellent source of two essential fertilizer elements, this research is expected to continue. [Pg.536]

Pha.se-Tra.nsfer Ca.ta.lysts, Many quaternaries have been used as phase-transfer catalysts. A phase-transfer catalyst (PTC) increases the rate of reaction between reactants in different solvent phases. Usually, water is one phase and a water-iminiscible organic solvent is the other. An extensive amount has been pubHshed on the subject of phase-transfer catalysts (233). Both the industrial appHcations in commercial manufacturing processes (243) and their synthesis (244) have been reviewed. Common quaternaries employed as phase-transfer agents include benzyltriethylammonium chloride [56-37-17, tetrabutylammonium bromide [1643-19-2] tributylmethylammonium chloride [56375-79-2] and hexadecylpyridinium chloride [123-03-5]. [Pg.383]

Sulfonic acids may be subjected to a variety of transformation conditions, as shown in Figure 2. Sulfonic acids can be used to produce sulfonic anhydrides by treatment with a dehydrating agent, such as thionyl chloride [7719-09-7J. This transformation is also accomphshed using phosphoms pentoxide [1314-56-3J. Sulfonic anhydrides, particulady aromatic sulfonic anhydrides, are often produced in situ during sulfonation with sulfur trioxide. Under dehydrating conditions, sulfonic acids react with substituted aromatic compounds to give sulfone derivatives. [Pg.96]

In the EHE process, a starch slurry is prepared and calcium, as the chloride or hydroxide, is added as a cofactor to provide heat stabiUty to the enzyme. The starch slurry is passed through a stream injection heater and held at temperature for about one hour. The resulting 4—8 DE hydrolyzate is then subjected to a heat treatment in a hoi ding tube, redosed with enzyme, and allowed to react for one hour to a DE level of 10—15. [Pg.290]

Photochemistry. Vinyl chloride is subject to photodissociation. Photexcitation at 193 nm results in the elimination of HCl molecules and Cl atoms in an approximately 1.1 1 ratio (69). Both vinyUdene ( B2) [2143-69-3] and acetylene have been observed as photolysis products (70), as have H2 molecules (71) and H atoms [12385-13-6] (72). HCl and vinyUdene appear to be formed via a concerted 1,1 elimination from excited vinyl chloride (70). An adiabatic recoil mechanism seems likely for Cl atom elimination (73). As expected from the relative stabiUties of the 1- and 2-chlorovinyl radicals [50663-45-1 and 57095-76-8], H atoms are preferentially produced by detachment from the P carbon (72). Finally, a migration mechanism appears to play a significant role in H2 elimination (71). [Pg.415]

Because of the presence of an extended polyene chain, the chemical and physical properties of the retinoids and carotenoids are dominated by this feature. Vitamin A and related substances are yellow compounds which are unstable in the presence of oxygen and light. This decay can be accelerated by heat and trace metals. Retinol is stable to base but is subject to acid-cataly2ed dehydration in the presence of dilute acids to yield anhydrovitamin A [1224-18-8] (16). Retro-vitamin A [16729-22-9] (17) is obtained by treatment of retinol in the presence of concentrated hydrobromic acid. In the case of retinoic acid and retinal, reisomerization is possible after conversion to appropriate derivatives such as the acid chloride or the hydroquinone adduct. Table 1 Hsts the physical properties of -carotene [7235-40-7] and vitamin A. [Pg.96]


See other pages where SUBJECTS chlorides is mentioned: [Pg.1710]    [Pg.899]    [Pg.79]    [Pg.139]    [Pg.111]    [Pg.92]    [Pg.236]    [Pg.450]    [Pg.284]    [Pg.311]    [Pg.133]    [Pg.387]    [Pg.66]    [Pg.419]    [Pg.526]    [Pg.157]    [Pg.465]    [Pg.535]    [Pg.536]    [Pg.279]    [Pg.167]    [Pg.341]    [Pg.143]    [Pg.50]    [Pg.65]    [Pg.67]    [Pg.134]    [Pg.316]    [Pg.418]    [Pg.62]    [Pg.84]    [Pg.378]   
See also in sourсe #XX -- [ Pg.2 , Pg.3 , Pg.4 ]




SEARCH



Acid chlorides Subject

Ammonium chloride Subject

Cyanogen chloride Subject

Hydrogen chloride Subject

Iron chloride 480 Subject

Methanesulfuryl chloride Subject

Molybdenum chloride Subject

Platinum chloride Subject

SUBJECTS charcoal 272 chloride

SUBJECTS chlorides 556 concentration cell

Sodium chloride 456 Subject

Subject acyl chlorides

Subject metal chlorides

Subject sodium chloride, NaCl

Subject thionyl chloride

Subject with thionyl chloride

© 2024 chempedia.info