Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Styrene hydrophobic

The Smith-Ewart expression (eq. 1) accurately predicts the particle number for hydrophobic monomers like styrene and butadiene (21), but fails to predict the particle number (22) for more hydrophilic monomers like methyl methacrylate and vinyl acetate. A new theory based on homogeneous particle... [Pg.23]

Emulsification is the process by which a hydrophobic monomer, such as styrene, is dispersed into micelles and monomer droplets. A measure of a surfactant s abiUty to solubilize a monomer is its critical micelle concentration (CMC). Below the CMC the surfactant is dissolved ia the aqueous phase and does not serve to solubilize monomer. At and above the CMC the surfactant forms spherical micelles, usually 50 to 200 soap molecules per micelle. Many... [Pg.24]

Polyall lene Oxide Block Copolymers. The higher alkylene oxides derived from propjiene, butylene, styrene (qv), and cyclohexene react with active oxygens in a manner analogous to the reaction of ethylene oxide. Because the hydrophilic oxygen constitutes a smaller proportion of these molecules, the net effect is that the oxides, unlike ethylene oxide, are hydrophobic. The higher oxides are not used commercially as surfactant raw materials except for minor quantities that are employed as chain terminators in polyoxyethylene surfactants to lower the foaming tendency. The hydrophobic nature of propylene oxide units, —CH(CH2)CH20—, has been utilized in several ways in the manufacture of surfactants. Manufacture, properties, and uses of poly(oxyethylene- (9-oxypropylene) have been reviewed (98). [Pg.254]

The uniform polymeric microspheres in submicron-or micron-size range can also be prepared as seed particles by the soapless emulsion or dispersion polymerization of a hydrophobic monomer like styrene. The uniform seed particles are swollen with the organic phase including functional comonomer, monomer, and oil-soluble initiator at a low temperature in an aqueous... [Pg.217]

When the polymer was prepared by the suspension polymerization technique, the product was crosslinked beads of unusually uniform size (see Fig. 16 for SEM picture of the beads) with hydrophobic surface characteristics. This shows that cardanyl acrylate/methacry-late can be used as comonomers-cum-cross-linking agents in vinyl polymerizations. This further gives rise to more opportunities to prepare polymer supports for synthesis particularly for experiments in solid-state peptide synthesis. Polymer supports based on activated acrylates have recently been reported to be useful in supported organic reactions, metal ion separation, etc. [198,199]. Copolymers are expected to give better performance and, hence, coplymers of CA and CM A with methyl methacrylate (MMA), styrene (St), and acrylonitrile (AN) were prepared and characterized [196,197]. [Pg.431]

As has been described in Chapter 4, random copolymers of styrene (St) and 2-(acrylamido)-2-methylpropanesulfonic acid (AMPS) form a micelle-like microphase structure in aqueous solution [29]. The intramolecular hydrophobic aggregation of the St residues occurs when the St content in the copolymer is higher than ca. 50 mol%. When a small mole fraction of the phenanthrene (Phen) residues is covalently incorporated into such an amphiphilic polyelectrolyte, the Phen residues are hydrophobically encapsulated in the aggregate of the St residues. This kind of polymer system (poly(A/St/Phen), 29) can be prepared by free radical ter-polymerization of AMPS, St, and a small mole fraction of 9-vinylphenanthrene [119]. [Pg.84]

Superheated water at 100°-240 °C, with its obvious benefits of low cost and low toxicity, was proposed as a solvent for reversed-phase chromatography.59 Hydrophobic compounds such as parabens, sulfonamides, and barbiturates were separated rapidly on poly(styrene-divinyl benzene) and graphitic phases. Elution of simple aromatic compounds with acetonitrile-water heated at 30°-130 °C was studied on coupled colums of zirconia coated with polybutadiene and carbon.60 The retention order on the polybutadiene phase is essentially uncorrelated to that on the carbon phase, so adjusting the temperature of one of the columns allows the resolution of critical pairs of... [Pg.64]

Drug Release from PHEMA-l-PIB Networks. Amphiphilic networks due to their distinct microphase separated hydrophobic-hydrophilic domain structure posses potential for biomedical applications. Similar microphase separated materials such as poly(HEMA- -styrene-6-HEMA), poly(HEMA-6-dimethylsiloxane- -HEMA), and poly(HEMA-6-butadiene- -HEMA) triblock copolymers have demonstrated better antithromogenic properties to any of the respective homopolymers (5-S). Amphiphilic networks are speculated to demonstrate better biocompatibility than either PIB or PHEMA because of their hydrophilic-hydrophobic microdomain structure. These unique structures may also be useful as swellable drug delivery matrices for both hydrophilic and lipophilic drugs due to their amphiphilic nature. Preliminary experiments with theophylline as a model for a water soluble drug were conducted to determine the release characteristics of the system. Experiments with lipophilic drugs are the subject of ongoing research. [Pg.210]

The monomers commonly used for the preparation of polymer monoliths are either hydrophobic, for example, styrene/divinylbenzene and alkyl methacrylates, or hydrophilic, for example, acrylamides. The polymerization is usually accomplished by radical chain mechanisms with thermal or photochemical initiation, as detailed in the reviews (Eeltink et al., 2004 Svec, 2004a and b). Internal structures of polymer monoliths are described to be corpuscular rather than spongy this means through-pores were found to be interstices of agglomerated globular skeletons as shown in Fig. 7.1 (Ivanov et al., 2003). Porosity is presumably predetermined by the preparation... [Pg.148]

The formation of inter- and intrapolymer complexes has also been shown to affect the polymerization kinetics. For example, Ferguson and Shah (1968) investigated the influence of intrapolymer complexation on the kinetics of AA in the presence of copolymer matrices composed of either A-vinylpyrrolidone and acrylamide or A--vi nyl pyrrol idone and styrene. The polymerization rate reaches a maximum in the vicinity of AA to VP ratio equal to one for the VP/AAm matrix. This maximum in the polymerization rate is most pronounced in the presence of copolymer with the highest content of VP. When the hydrophilic acrylamide is replaced with the more hydrophobic styrene monomer in the copolymer matrix, the observed maximum in AA polymerization rate occurred at a lower than equimolar ratio of AA to VP. The hydrophilic groups of VP were interacting with the hydrophobic nucleus consisting of the styrene units in the VP/St copolymer, and were thus unable to participate in the formation of the complex unlike in the case of VP/AAm copolymer matrix. [Pg.95]

The influence of adsorption on the structure of a -chymotrypsin is shown in Fig. 10, where the circular dichroism (CD) spectrum of the protein in solution is compared with that of the protein adsorbed on Teflon and silica. Because of absorbance in the far UV by the aromatic styrene, it is impossible to obtain reliable CD spectra of proteins adsorbed on PS and PS- (EO)8. The CD spectrum of a protein reflects its composition of secondary structural elements (a -helices, / -sheets). The spectrum of dissolved a-chymotrypsin is indicative of a low content of or-helices and a high content of //-sheets. After adsorption at the silica surface, the CD spectrum is shifted, but the shift is much more pronounced when the protein was adsorbed at the Teflon surface. The shifts are in opposite directions for the hydrophobic and hydrophilic surfaces, respectively. The spectrum of the protein on the hydrophilic surface of silica indicates a decrease in ordered secondary structure, i.e., the polypeptide chain in the protein has an increased random structure and, hence, a larger conformational entropy. Adsorption on the hydrophobic Teflon surface induces the formation of ordered structural elements, notably an increase in the content of O -helices (cfi, the discussion in Sect. 3.1.4). [Pg.118]

The temperature dependence of solutions of an NIPAM-styrene copolymer, PNIPAM-seg-St, of Mw = 13.3 x 106gmol 1 in which hydrophobic St segments were evenly spaced along the chain was investigated under high di-... [Pg.48]

For self-emulsification the molar mass of the EUP must be within a certain range. If the molar mass is too high, the solubility of the EUP is too low. If the molar mass is too low, the solubilizing efficiency is insufficient. With an EUP from maleic anhydride (MA) and hexanediol-1,6 (HD) and acid terminal groups, the optimal molar mass for the solubilization of a hydrophobic comonomer, such as styrene (S), was found to be between about 1700 and 2200 [116]. [Pg.161]

Hydrophobic solubilizates such as styrene (S) decrease the saponification rate of the EUP. Accordingly, the EUP-molecules in micelles containing S are more resistant against hydrolytic degradation than molecularly dissolved EUP-mole-cules. Obviously, the access of the base to the hydrophobic interior of these micelles and microemulsion droplets is more difficult. [Pg.164]

Ion exchange resins based on poly(styrene-divinylbenzene) backbones display mixed mode retention mechanisms. The ion exchange functionality (sulfonic acid or carboxylic acid for cation exchangers and quartemary or primary, secondary, or tertiary amines for anion exchangers) contributes to the ionic mechanism and the backbone polymer to hydrophobic retention. This is exemplified... [Pg.7]

TiCU readily functionalizes hydrophilic polymers such as poly(vinyl alcohol), m-ciesol novolac and methacrylic acid copolymers as well as moderately hydrophobic polymers such as poly(methyl methacrylate), poly(vinyl acetate), poly(benzyl methacrylate) and fully acetylated m-cresol novolac. HCI4 did not react with poly(styrene) to form etch resistant films indicating that very hydrophobic films follow a different reaction pathway. RBS analysis revealed that Ti is present only on the surface of hydrophilic and moderately hydrophobic polymer films, whereas it was found diffused through the entire thickness of the poly(styrene) films. The reaction pathways of hydrophilic and hydrophobic polymers with HCI4 are different because TiCl is hydrolysed by the surface water at the hydrophilic polymer surfaces to form an etch resistant T1O2 layer. Lack of such surface water in hydrophobic polymers explains the absence of a surface TiC>2 layer and the poor etching selectivities. [Pg.208]

A photooxidative scheme has been developed to pattern sub half-micron images in single layer resist schemes by photochemical generation of hydrophilic sites in hydrophobic polymers such as poly(styrene) and chlorinated poly(styrene) and by selective functionalization of these hydrophilic sites with TiCU followed by O2 RIE development. Sub half-micron features were resolved in 1-2 pm thick chlorinated poly(styrene) films with exposures at 248 nm on a KrF excimer laser stepper. The polymers are much more sensitive to 193 nm (sensitivity 3-32 mJ/cm2) than to 248 nm radiation (sensitivity -200 mJ/cm2) because of then-intense absorption at 193 nm. [Pg.208]


See other pages where Styrene hydrophobic is mentioned: [Pg.260]    [Pg.260]    [Pg.195]    [Pg.5892]    [Pg.260]    [Pg.260]    [Pg.195]    [Pg.5892]    [Pg.209]    [Pg.5]    [Pg.21]    [Pg.192]    [Pg.495]    [Pg.190]    [Pg.198]    [Pg.215]    [Pg.213]    [Pg.158]    [Pg.150]    [Pg.906]    [Pg.124]    [Pg.218]    [Pg.230]    [Pg.333]    [Pg.376]    [Pg.350]    [Pg.200]    [Pg.572]    [Pg.37]    [Pg.583]    [Pg.589]    [Pg.113]    [Pg.115]    [Pg.81]    [Pg.27]    [Pg.221]   
See also in sourсe #XX -- [ Pg.332 ]




SEARCH



© 2024 chempedia.info