Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Subphase structure

In light of the experiment on the compression and expansion of the monolayer and the calculation on the depth of the dragged substrate, we conclude that not only is the coiling of the protein monolayer important in the observed effect but also the structure of the sheath of bound water below the monolayer (subphase) and the extent to which it is bound to the monolayer effect the surface viscosity. Thus we advance the following hypothesis of a non-structured and structured subphase. [Pg.277]

This region has been divided into two subphases, L and S. The L phase differs from the L2 phase in the direction of tilt. Molecules tilt toward their nearest neighbors in L2 and toward next nearest neighbors in L (a smectic F phase). The S phase comprises the higher-ir and lower-T part of L2. This phase is characterized by smectic H or a tilted herringbone structure and there are two molecules (of different orientation) in the unit cell. Another phase having a different tilt direction, L, can appear between the L2 and L 2 phases. A new phase has been identified in the L 2 domain. It is probably a smectic L structure of different azimuthal tilt than L2 [185]. [Pg.134]

X-ray diffraction has been applied to spread monolayers as reviewed by Dutta [67] and Als-Nielsen et al. [68], The structure of heneicosanoic acid on Cu and Ca containing subphases as a function of pH has been reported [69], as well as a detailed study of the ordered phases of behenic acid [70], along with many other smdies. Langmuir-Blod-gett films have also been studied by x-ray diffraction. Some recent studies include LB film structure just after transfer [71], variations in the structure of cadmium stearate LB films with temperature [72], and characterization of the structure of cadmium arachidate LB films [73], X-ray [74,75] and neutron reflectivity [76,77] data on LB films can be used to model the density profile normal to the interface and to obtain values of layer thickness and roughness. [Pg.69]

Conjugated polymers doped with C60 become p-type semiconductors [305,306] some LB films of two polyalkylthiophenes mixed with arachidic acid and doped with C60 have been prepared [307]. The films of polyalkylthiophene + arachidic acid -l- C60 (spread from mixtures of 1.0 0.33 0.1 ratio) on ITO glass had a well-defined layer structure, as confirmed by x-ray diffraction. The bilayer distance obtained from the Bragg equation was 5.6 nm, the same as for arachidic acid LB films. Since the films were spread on subphases containing... [Pg.113]

In the same year, Fulda and Tieke [75] reported on Langmuir films of monodisperse, 0.5-pm spherical polymer particles with hydrophobic polystyrene cores and hydrophilic shells containing polyacrylic acid or polyacrylamide. Measurement of ir-A curves and scanning electron microscopy (SEM) were used to determine the structure of the monolayers. In subsequent work, Fulda et al. [76] studied a variety of particles with different hydrophilic shells for their ability to form Langmuir films. Fulda and Tieke [77] investigated the influence of subphase conditions (pH, ionic strength) on monolayer formation of cationic and anionic particles as well as the structure of films made from bidisperse mixtures of anionic latex particles. [Pg.217]

In 1997, a Chinese research group [78] used the colloidal solution of 70-nm-sized carboxylated latex particles as a subphase and spread mixtures of cationic and other surfactants at the air-solution interface. If the pH was sufficiently low (1.5-3.0), the electrostatic interaction between the polar headgroups of the monolayer and the surface groups of the latex particles was strong enough to attract the latex to the surface. A fairly densely packed array of particles could be obtained if a 2 1 mixture of octadecylamine and stearic acid was spread at the interface. The particle films could be transferred onto solid substrates using the LB technique. The structure was studied using transmission electron microscopy. [Pg.217]

It is also interesting to note that only a fraction of PS II membrane protein forms a stable monolayer structure and the rest of them fall into the water subphase. This can be seen directly by the naked eye during the compression. Furthermore, if we use the total amount of PS II membrane protein to calculate the average particle size from the n-A curve, we obtain an area of about 200 nm. This value is very small when compared with that of the PS II core complex (320 nm, as discussed in the subsequent section), which is a smaller subunit of the PS II membranes. A PS II membrane fragment contains PS II core complex and several LHC II proteins, and is much larger in size than a PS II core complex... [Pg.642]

Compression of the PS II membrane monolayer shows that the monolayer collapses at a relatively low surface pressure, at around 20mN/m. This can be attributed to the formation of a multilayered structure [8] and some of PS II membrane fragments diffuse into the subphase. This observation further indicates that PS II membranes can only marginally stay at the air-water interface and one must be very careful in choosing the experimental parameters. [Pg.643]

We studied the surface pressure area isotherms of PS II core complex at different concentrations of NaCl in the subphase (Fig. 2). Addition of NaCl solution greatly enhanced the stability of monolayer of PS II core complex particles at the air-water interface. The n-A curves at subphases of 100 mM and 200 mM NaCl clearly demonstrated that PS II core complexes can be compressed to a relatively high surface pressure (40mN/m), before the monolayer collapses under our experimental conditions. Moreover, the average particle size calculated from tt-A curves using the total amount of protein complex is about 320 nm. This observation agrees well with the particle size directly observed using atomic force microscopy [8], and indicates that nearly all the protein complexes stay at the water surface and form a well-structured monolayer. [Pg.643]

Photosystem I is a membrane pigment-protein complex in green plants, algae as well as cyanobacteria, and undergoes redox reactions by using the electrons transferred from photosystem II (PS II) [1], These membrane proteins are considered to be especially interesting in the study of monomolecular assemblies, because their structure contains hydrophilic area that can interact with the subphase as well as hydrophobic domains that can interact either with each other or with detergent and lipids [2], Moreover, studies with such proteins directly at the air-water interface are expected to be a valuable approach for their two-dimensional crystallization. [Pg.161]

EFFECT OF POLYCATION IN SUBPHASE ON AGGREGATION STRUCTURE OF MONOLAYER OF ANIONIC AMPHIPHILE... [Pg.28]

Figure 17 shows the chemical structures of anionic amphiphile sodium-1,2-bis (tetradecylcarbonyl)ethane-l-sulfonate (2Cj4SNa)[34] and poly(ethyleneimine)(PEI). A benzene/ethanol (9 1)(WV) solution of anionic amphiphile was spread on the pure water surface or the PEI-water solution (lxlO5 unit M in monomer unit, pH=3.2) surface at a subphase temperature, Tsp of 293 K. At this pH, ca. 70 % of nitrogen atom in PEI molecule was protonated[35]. Surface pressure-area(ji-A) isotherms were measured with a microprocessor controlled film balance system. [Pg.28]

The out-of-plane orientation of chromophores can be more easily controlled in LB films as compared with the in-plane orientation. Many chromophores are known to show anisotropic orientation in the surface normal direction. The molecular structure of chromophores and their position in amphiphile molecules, the surface pressure, the subphase conditions are among those affect their out-of-plane orientation. The out-of-plane orientation has been studied by dichroic ratio at 45° incidence, absorbance ratio at normal and 45° incidence, and incident angle dependence of p-polarized absorption [3,4,27,33-41]. The evaluation of the out-of-plane orientation in LB films is given below using amphipathic porphyrin (AMP) as an example [5,10,12]. [Pg.262]

For the fabrication of noncentrosymmetric LB films, a two-compartment Langmuir trough, of which detail is given in the section 1.4, was used. Monolayers of pyrazine derivatives and arachidic add were spread on each compartmentalized subphase (BaC or CdCl aqueous solution, 2 x 10"4 M). The monolayers were compressed to 30 mNm 1, and then monolayers of pyrazine derivatives and arachidic acid were deposited fused quartz substrates in up stroke and down stroke, respectively. The aggregation structure in the LB films was studies by the absorption spectra and X-ray diffraction. [Pg.315]

Figure 21 shows three possible routes to obtain oriented PAV films by the LB technique. In these route, it is anticipated that orientational orderliness of precursor polymers is introduced in the precursor LB films through the formation of two-dimensionally oriented monolayer of a polyelectrolyte precursor-anionic amphiphile polyion complex at the air/subphase interface and orientation of the precursor monolayers along the dipping direction dining the deposition process. As a result, it is expected to obtain oriented PAV LB films with well-developed jt-coryugation system. In this study, we successfully prepared oriented PAV films using two routes of them, b-1 and b-2 route [35-37]. The chemical structures of PAVs, their polyelectrolyte precursors and an anionic amphiphile used in this study are shown in Fig.22. [Pg.324]

Chirality (or a lack of mirror symmetry) plays an important role in the LC field. Molecular chirality, due to one or more chiral carbon site(s), can lead to a reduction in the phase symmetry, and yield a large variety of novel mesophases that possess unique structures and optical properties. One important consequence of chirality is polar order when molecules contain lateral electric dipoles. Electric polarization is obtained in tilted smectic phases. The reduced symmetry in the phase yields an in-layer polarization and the tilt sense of each layer can change synclinically (chiral SmC ) or anticlinically (SmC)) to form a helical superstructure perpendicular to the layer planes. Hence helical distributions of the molecules in the superstructure can result in a ferro- (SmC ), antiferro- (SmC)), and ferri-electric phases. Other chiral subphases (e.g., Q) can also exist. In the SmC) phase, the directions of the tilt alternate from one layer to the next, and the in-plane spontaneous polarization reverses by 180° between two neighbouring layers. The structures of the C a and C phases are less certain. The ferrielectric C shows two interdigitated helices as in the SmC) phase, but here the molecules are rotated by an angle different from 180° w.r.t. the helix axis between two neighbouring layers. [Pg.125]

Influence of subphase temperature, pH, and molecular structure of the lipids on their phase behavior can easily be studied by means of this method. The effect of chain length and structure of polymerizable and natural lecithins is illustrated in Figure 5. At 30°C distearoyllecithin is still fully in the condensed state (33), whereas butadiene lecithin (4), which carries the same numEer of C-atoms per alkyl chain, is already completely in the expanded state (34). Although diacetylene lecithin (6) bears 26 C-atoms per chain, it forms both an expanded and a condensed phase at 30°C. The reason for these marked differences is the disturbance of the packing of the hydrophobic side chains by the double and triple bonds of the polymerizable lipids. At 2°C, however, all three lecithins are in the condensed state. Chapman (27) reports about the surface pressure area isotherms of two homologs of (6) containing 23 and 25 C-atoms per chain. These compounds exhibit expanded phases even at subphase temperatures as low as 7°C. [Pg.215]

The ability of a chiral molecule to distinguish between the enantiomers of a second (different) chiral molecule was defined in Sect. II as a diastereomer discrimination. This phenomenon may be observed in a mixed monolayer of two chiral surfactants and may also occur when a chiral substance is dissolved in the aqueous subphase under the monolayer of a second chiral substance. As before, examples of such chiral discrimination would not include those whose difference in monolayer behavior results only from the gross structural differences of diastereomers such as the different force-area characteristics exhibited by mixed monolayers of l-oleoyl-2-stearoyl-3-s -phospha-tidylcholine with epimeric steroids (120). The relevant experiment, that of comparing the monolayer behavior of mixed monolayers of cholesterol with enantiomeric phospholipids, has been reported (121). As might be anticipated from our previous discussion of... [Pg.249]


See other pages where Subphase structure is mentioned: [Pg.277]    [Pg.224]    [Pg.277]    [Pg.224]    [Pg.119]    [Pg.135]    [Pg.11]    [Pg.81]    [Pg.84]    [Pg.90]    [Pg.98]    [Pg.103]    [Pg.169]    [Pg.220]    [Pg.224]    [Pg.364]    [Pg.365]    [Pg.375]    [Pg.266]    [Pg.646]    [Pg.50]    [Pg.83]    [Pg.471]    [Pg.30]    [Pg.101]    [Pg.201]    [Pg.216]    [Pg.224]    [Pg.282]    [Pg.69]    [Pg.350]    [Pg.176]    [Pg.202]    [Pg.226]   
See also in sourсe #XX -- [ Pg.268 , Pg.270 ]




SEARCH



Subphase

© 2024 chempedia.info