Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Structure allotropic

The Physical Properties are listed next. Under this loose term a wide range of properties, including mechanical, electrical and magnetic properties of elements are presented. Such properties include color, odor, taste, refractive index, crystal structure, allotropic forms (if any), hardness, density, melting point, boiling point, vapor pressure, critical constants (temperature, pressure and vol-ume/density), electrical resistivity, viscosity, surface tension. Young s modulus, shear modulus, Poisson s ratio, magnetic susceptibility and the thermal neutron cross section data for many elements. Also, solubilities in water, acids, alkalies, and salt solutions (in certain cases) are presented in this section. [Pg.1091]

Selenium exists in several allotropic forms. Three are generally recognized, but as many as that have been claimed. Selenium can be prepared with either an amorphous or crystalline structure. The color of amorphous selenium is either red, in powder form, or black, in vitreous form. Crystalline monoclinic selenium is a deep red crystalline hexagonal selenium, the most stable variety, is a metallic gray. [Pg.96]

The metal has a bright silvery metallic luster. Neodymium is one of the more reactive rare-earth metals and quickly tarnishes in air, forming an oxide that spalls off and exposes metal to oxidation. The metal, therefore, should be kept under light mineral oil or sealed in a plastic material. Neodymium exists in two allotropic forms, with a transformation from a double hexagonal to a body-centered cubic structure taking place at 863oC. [Pg.181]

The metal has a silvery appearance and takes on a yellow tarnish when slightly oxidized. It is chemically reactive. A relatively large piece of plutonium is warm to the touch because of the energy given off in alpha decay. Larger pieces will produce enough heat to boil water. The metal readily dissolves in concentrated hydrochloric acid, hydroiodic acid, or perchloric acid. The metal exhibits six allotropic modifications having various crystalline structures. The densities of these vary from 16.00 to 19.86 g/cms. [Pg.205]

Chapter 1 contains a review of carbon materials, and emphasizes the stmeture and chemical bonding in the various forms of carbon, including the foui" allotropes diamond, graphite, carbynes, and the fullerenes. In addition, amorphous carbon and diamond fihns, carbon nanoparticles, and engineered carbons are discussed. The most recently discovered allotrope of carbon, i.e., the fullerenes, along with carbon nanotubes, are more fully discussed in Chapter 2, where their structure-property relations are reviewed in the context of advanced technologies for carbon based materials. The synthesis, structure, and properties of the fullerenes and... [Pg.555]

Carbon nanotubes (CNTs) as well as fullerenes are splendid gift brought to the Earth from the red giant carbon stars in the long-distant universe through the spectroscopy. Moreover, those belong to new carbon allotropes of the mesoscopic scale with well-defined structures. In particular, CNTs are considered to be the materials appropriate to realise intriguing characteristics related to the mesoscopic system based on their size and physicochemical properties. [Pg.1]

The structural complexity of borate minerals (p. 205) is surpassed only by that of silicate minerals (p. 347). Even more complex are the structures of the metal borides and the various allotropic modifications of boron itself. These factors, together with the unique structural and bonding problems of the boron hydrides, dictate that boron should be treated in a separate chapter. [Pg.139]

Boron is unique among the elements in the structural complexity of its allotropic modifications this reflects the variety of ways in which boron seeks to solve the problem of having fewer electrons than atomic orbitals available for bonding. Elements in this situation usually adopt metallic bonding, but the small size and high ionization energies of B (p. 222) result in covalent rather than metallic bonding. The structural unit which dominates the various allotropes of B is the B 2 icosahedron (Fig. 6.1), and this also occurs in several metal boride structures and in certain boron hydride derivatives. Because of the fivefold rotation symmetry at the individual B atoms, the B)2 icosahedra pack rather inefficiently and there... [Pg.141]

Figure 16.1 Structures of various allotropes of selenium and the structure of crystalline tellurium (a) the Seg unit in a- fi- and y-red selenium (b) the helical Se chain along the c-axis in hexagonal grey selenium (c) the similar helical chain in crystalline tellurium shown in perspective and (d) projection of the tellurium structure on a plane perpendicular to the c-axis. Figure 16.1 Structures of various allotropes of selenium and the structure of crystalline tellurium (a) the Seg unit in a- fi- and y-red selenium (b) the helical Se chain along the c-axis in hexagonal grey selenium (c) the similar helical chain in crystalline tellurium shown in perspective and (d) projection of the tellurium structure on a plane perpendicular to the c-axis.
In the solid state all three elements have typically metallic structures. Technetium and Re are isostructural with hep lattices, but there are 4 allotropes of Mn of which the o-fomi is the one stable at room temperature. This has a bcc structure in which, for reasons which are not clear, there are 4 distinct types of Mn atom. It is hard and brittle, and noticeably less refractory than its predecessors in the first transition series. [Pg.1043]

If you re a sports fan, you ve almost certainly seen this structure before. It is that of a soccer ball with a carbon atom at each vertex. Smalley and his colleagues could have named this allotropic form of carbon "carbosoccer" or "soc-cerene," but they didn t. Instead they called it "buckminster fullerene" after the architect R. Buckminster Fuller, whose geodesic domes vaguely resembled truncated soccer balls. [Pg.250]

The two most familiar allotropes of sulfur, rhombic and monoclinic, have the same molecular formula, S8. However, they differ in crystal structure. Using the phase diagram shown in Figure C. you can deduce how to convert either of these allotropes to the other. Notice that rhombic sulfur is the stable allotrope at temperatures below about 95°C. If it is heated to that temperature at... [Pg.251]

Sulfur has about 20 different allotropes. The most common are rhombic sulfur (file stable form at 25°C and 1 atm) and monoclinic sulfur. They differ in their crystal structures. Given... [Pg.475]

Solid carbon exists as graphite, diamond, and other phases such as the fullerenes, which have structures related to that of graphite. Graphite is the thermodynamically most stable of these allotropes under ordinary conditions. In this section, we see how the properties of the different allotropes of carbon are related to differences in bonding. [Pg.725]

We can understand the differences in properties between the carbon allotropes by comparing their structures. Graphite consists of planar sheets of sp2 hybridized carbon atoms in a hexagonal network (Fig. 14.29). Electrons are free to move from one carbon atom to another through a delocalized Tr-network formed by the overlap of unhybridized p-orbitals on each carbon atom. This network spreads across the entire plane. Because of the electron delocalization, graphite is a black, lustrous, electrically conducting solid indeed, graphite is used as an electrical conductor in industry and as electrodes in electrochemical cells and batteries. Its... [Pg.725]

Distinguish the allotropes of carbon by their structures and show how their structures affect their properties. [Pg.738]

Compare the hybridization and structure of carbon in diamond and graphite. How do these features explain the physical properties of the two allotropes ... [Pg.740]


See other pages where Structure allotropic is mentioned: [Pg.167]    [Pg.209]    [Pg.210]    [Pg.265]    [Pg.266]    [Pg.118]    [Pg.4]    [Pg.5]    [Pg.205]    [Pg.282]    [Pg.199]    [Pg.116]    [Pg.142]    [Pg.276]    [Pg.331]    [Pg.481]    [Pg.491]    [Pg.654]    [Pg.658]    [Pg.670]    [Pg.751]    [Pg.751]    [Pg.751]    [Pg.1115]    [Pg.250]    [Pg.696]    [Pg.73]    [Pg.75]    [Pg.454]    [Pg.313]    [Pg.718]    [Pg.940]    [Pg.393]   
See also in sourсe #XX -- [ Pg.222 ]




SEARCH



ALLOTROPIC

Allotropes

Allotropic crystal structures, metallic

Allotropism

Structure of Various Carbon Allotropes

Structures carbon allotropes

© 2024 chempedia.info