Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Specific surface measurements

Changing of powders surface of investigated mixtures as a result of their mechanical treatment has been estimated by specific surface measuring by the BET method. [Pg.432]

Curzons AD, Merrifield DR, Warr JP. The assessment of crystal growth of organic pharmaceutic material by specific surface measurement. J Phys D Appl Phys 1993 26 B181-B187. [Pg.233]

Other important characterization studies are ion-exchange capacity, especially cationic, and specific surface measurement. CEC is an important parameter in clay characterization and soil behavior, because it affects nutrient availability, among other soil properties. Some clay minerals (smectites and vermiculites) have a high... [Pg.290]

Mantellato, S., M. Palacios and R. J. Flatt (2012). Reliable Specific Surface Measurement of Fresh Cement Pastes . In 14. GDCh-Tagung Bauchemie. Diibendorf, Switzerland. [Pg.482]

The authors state that specific surface measurements do not suggest fine enough particle size to permit the high background to be attributed to particle size effects alone. [Pg.279]

Specific surface measurements suggest the presence of both vermiculitic and mont-morillonitic components. Illite also is present in large quantity, so the likelihood is that this is a complex interstratification of at least three components. Some diffraction peaks at lower angles coincide with higher-order peaks of illite or kaolinite, but there are also nonintegral peaks. [Pg.316]

The physics of X-ray refraction are analogous to the well known refraction of light by optical lenses and prisms, governed by Snell s law. The special feature is the deflection at very small angles of few minutes of arc, as the refractive index of X-rays in matter is nearly one. Due to the density differences at inner surfaces most of the incident X-rays are deflected [1]. As the scattered intensity of refraction is proportional to the specific surface of a sample, a reference standard gives a quantitative measure for analytical determinations. [Pg.558]

Make a numerical estimate, with an explanation of the assumptions involved, of the specific surface area that would be found by (a) a rate of dissolving study, (b) Harkins and Jura, who find that at the adsorption of water vapor is 6.5 cm STP/g (and then proceed with a heat of immersion measurement), and (c) a measurement of the permeability to liquid flow through a compacted plug of the powder. [Pg.593]

In all other cases the quantity / calculated from the specific surface is a mean diameter. Unless there is some definite and detailed evidence as to particle shape, the simplest such diameter to aim at is the mean diameter obtained by substituting the measured value of A in Equation (1.79)... [Pg.35]

Following the pioneer work of Beebe in 1945, the adsorption of krypton at 77 K has come into widespread use for the determination of relatively small surface areas because its saturation vapour pressure is rather low (p° 2Torr). Consequently the dead space correction for unadsorbed gas is small enough to permit the measurement of quite small adsorption with reasonable precision. Estimates of specific surface as low as 10 cm g" have been reported. Unfortunately, however, there are some complications in the interpretation of the adsorption isotherm. [Pg.77]

Furthermore, it must be remembered that highly disperse materials are, from their very nature, difficult to prepare with exactly reproducible surface properties, in respect of either the extent of the surface or the nature of the surface itself. Consequently, highly precise values of the absolute area of individual samples, even if attainable by some method as yet undeveloped, would be of little more value in practice than the BET specific surface, calculated from carefully measured isotherms. [Pg.105]

In writing the present book our aim has been to give a critical exposition of the use of adsorption data for the evaluation of the surface area and the pore size distribution of finely divided and porous solids. The major part of the book is devoted to the Brunauer-Emmett-Teller (BET) method for the determination of specific surface, and the use of the Kelvin equation for the calculation of pore size distribution but due attention has also been given to other well known methods for the estimation of surface area from adsorption measurements, viz. those based on adsorption from solution, on heat of immersion, on chemisorption, and on the application of the Gibbs adsorption equation to gaseous adsorption. [Pg.292]

A fundamental requirement in powder processing is characterization of the as-received powders (10—12). Many powder suppHers provide information on tap and pour densities, particle size distributions, specific surface areas, and chemical analyses. Characterization data provided by suppHers should be checked and further augmented where possible with in-house characterization. Uniaxial characterization compaction behavior, in particular, is easily measured and provides data on the nature of the agglomerates in a powder (13,14). [Pg.310]

The external surface area of the filler can be estimated from a psd by summing the area of all of the equivalent spheres. This method does not take into account the morphology of the surface. It usually yields low results which provide Htde information on the actual area of the filler that induences physical and chemical processes in compounded systems. In practice, surface area is usually determined (5) from the measured quantity of nitrogen gas that adsorbs in a monolayer at the particle surface according to the BET theory. From this monolayer capacity value the specific surface area can be determined (6), which is an area per unit mass, usually expressed in m /g. [Pg.367]

Chemica.1 Properties. The reactivity of magnesium hydroxide is measured primarily by specific surface area in units of /g and median particle size in p.m. Reactivity ranges from low, 1-2 /g, 5 p.m, eg, Kyowa s product to high, 60-80 /g, 5—25 pm, eg, Barcroft s CPS and CPS-UF... [Pg.345]

Specific Surface. The total surface area of 1 g of powder measured ia cm /g is called its specific surface. The specific surface area is an excellent iadicator for the conditions under which a reaction is initiated and also for the rate of the reaction. It correlates in general with the average particle size. The great difference in surface area between 6-p.m reduced iron powder and 7-p.m carbonyl iron powder (Table 3) cannot be explained in terms of particle size, but mainly by the difference between the very inregular-shaped reduced and the spherical carbonyl iron powders. [Pg.181]

Deterrnination of the specific surface area can be made by a variety of adsorption measurements or by air-permeability deterrninations. It is customary to calculate average particle size from the values of specific surface by making assumptions regarding particle size distribution and particle shape, ie, assume it is spherical. [Pg.181]

Other Measurements. Other tests include free moisture content, rate of dissolution and undissolved residue in acids and alkaH, resin and plasticizer absorption, suspension viscosity, and specific surface area. Test procedures for these properties are developed to satisfy appHcation-related specifications. [Pg.172]

Characterization. When siHca gel is used as an adsorbent, the pore stmcture determines the gel adsorption capacity. Pores are characterized by specific surface area, specific pore volume (total volume of pores per gram of solid), average pore diameter, pore size distribution, and the degree to which entrance to larger pores is restricted by smaller pores. These parameters are derived from measuring vapor adsorption isotherms, mercury intmsion, low angle x-ray scattering, electron microscopy, gas permeabiHty, ion or molecule exclusion, or the volume of imbibed Hquid (1). [Pg.491]

Indirect methods of estimating sorption have been used when actual measurement of sorption isotherm is impossible (44). For instance, sorption coefficients have been estimated from soil organic carbon and a specific surface of soil, and from semiempidcal equations using pesticide properties. [Pg.222]

Another standard industry method for surface area is based on the adsorption of cetyltrimethylammonium bromide (CTAB) from aqueous solution. This is ASTM method D3765-85 (2). This method measures the specific surface area of carbon black exclusive of the internal area contained in micropores that are too small to admit the large CTAB molecules. Eor mbber-grade nonporous blacks the CTAB method gives excellent agreement with nitrogen surface areas. [Pg.548]

Physical properties of catalysts also may need to be checked periodically, includiug pellet size, specific surface, porosity, pore size and size distribution, and effective diffusivity. The effectiveness of a porous catalyst is found by measuring conversions with successively smaller pellets until no further change occurs. These topics are touched on by Satterfield (Heterogeneous Cataly.sls in Jndustiial Practice, McGraw-Hill, 1991). [Pg.708]

Also, in cases where the dimensions of a regular particle vary throughout a bed of such particles or are not known, but where the fractional free volume and specific surface can be measured or calculated, the shape factor can be calculated and the equivalent diameter of the regular particle determined from Figure 2. [Pg.369]

Much of the difficulty in demonstrating the mechanism of breakaway in a particular case arises from the thinness of the reaction zone and its location at the metal-oxide interface. Workers must consider (a) whether the oxide is cracked or merely recrystallised (b) whether the oxide now results from direct molecular reaction, or whether a barrier layer remains (c) whether the inception of a side reaction (e.g. 2CO - COj + C)" caused failure or (d) whether a new transport process, chemical transport or volatilisation, has become possible. In developing these mechanisms both arguments and experimental technique require considerable sophistication. As a few examples one may cite the use of density and specific surface-area measurements as routine of porosimetry by a variety of methods of optical microscopy, electron microscopy and X-ray diffraction at reaction temperature of tracer, electric field and stress measurements. Excellent metallographic sectioning is taken for granted in this field of research. [Pg.282]


See other pages where Specific surface measurements is mentioned: [Pg.64]    [Pg.100]    [Pg.275]    [Pg.405]    [Pg.1]    [Pg.131]    [Pg.224]    [Pg.152]    [Pg.64]    [Pg.100]    [Pg.275]    [Pg.405]    [Pg.1]    [Pg.131]    [Pg.224]    [Pg.152]    [Pg.592]    [Pg.65]    [Pg.74]    [Pg.79]    [Pg.257]    [Pg.283]    [Pg.466]    [Pg.318]    [Pg.487]    [Pg.351]    [Pg.548]    [Pg.258]    [Pg.369]    [Pg.742]    [Pg.160]    [Pg.175]   


SEARCH



Measurement surface

Procedures to measure the specific surface area

Specific measurements

Specific surface

Specific surface area measurement

Specificity, measurement

Surface specificity

Surface specifity

© 2024 chempedia.info