Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spectrometry spark source

Spark Source Mass Spectrometry Spark Source Mass Spectrometry... [Pg.768]

Neutron Activation Analysis X-Ray Fluorescence Particle-Induced X-Ray Emission Particle-Induced Nuclear Reaction Analysis Rutherford Backscattering Spectrometry Spark Source Mass Spectrometry Glow Discharge Mass Spectrometry Electron Microprobe Analysis Laser Microprobe Analysis Secondary Ion Mass Analysis Micro-PIXE... [Pg.128]

Hi) Methods based on mass spectrometry Spark-source mass spectrometry Glow-discharge mass spectrometry Inductively coupled-plasma mass spectrometry Electro-thermal vaporization-lCP-MS Thermal-ionization mass spectrometry Accelerator mass spectrometry Secondary-ion mass spectrometry Secondary neutral mass spectrometry Laser mass spectrometry Resonance-ionization mass spectrometry Sputter-initiated resonance-ionization spectroscopy Laser-ablation resonance-ionization spectroscopy... [Pg.208]

SRM. selected reaction monitoring SSMS. spark source mass spectrometry... [Pg.446]

The conventional method for quantitative analysis of galHum in aqueous media is atomic absorption spectroscopy (qv). High purity metallic galHum is characteri2ed by trace impurity analysis using spark source (15) or glow discharge mass spectrometry (qv) (16). [Pg.160]

Inductively coupled argon plasma (icp) and direct current argon plasma (dcp) atomic emission spectrometry are solution techniques that have been appHed to copper-beryUium, nickel—beryUium, and aluminum—beryUium aUoys, beryUium compounds, and process solutions. The internal reference method, essential in spark source emission spectrometry, is also useful in minimizing drift in plasma emission spectrometry (17). Electrothermal (graphite... [Pg.68]

Spark Source Mass Spectrometry (SSMS) is a method of trace level analysis—less than 1 part per million atomic (ppma)—in which a solid material, in the form of two conducting electrodes, is vaporized and ionized by a high-voltage radio frequency spark in vacuum. The ions produced from the sample electrodes are accelerated into a mass spectrometer, separated according to their mass-to-charge ratio, and collected for qualitative identification and quantitative analysis. [Pg.45]

C. W. Magee. Critical Parameters Affecting Precision and Accuracy in Spark Source Mass Spectrometry with Electrical Detection. PhD thesis, Univetsity of Virginia, University Microfilms, Ann Arbot, MI, 1973. [Pg.608]

Because GDMS can provide ultratrace analysis with total elemental coverage, the technique fills a unique analytical niche, supplanting Spark-Source Mass Spectrometry (SSMS) by supplying the same analysis with an order-of-magnitude better accuracy and orders-of-magnitude improvement in detection limits. GDMS analy-... [Pg.609]

H. Kramer, S. Semel J.E. Abel, Trace Elemental Survey Analysis of Trinitrotoluene , PATR 4767 (1975) (An evaluation of the applicability of spark source mass spectrometry and thermal neutron activation for the detn of origin-related trace elemental impurities in TNT) 10) C. Ribando J. Haber-man, Origin-Identification of Explosives Via Their Composite Impurity Profiles I. The... [Pg.141]

Applications Atomic emission spectrometry has been used for polymer/additive analysis in various forms, such as flame emission spectrometry (Section 8.3.2.1), spark source spectrometry (Section 8.3.2.2), GD-AES (Section 8.3.2.3), ICP-AES (Section 8.3.2.4), MIP-AES (Section 8.3.2.6) and LIBS. Only ICP-AES applications are significant. In hyphenated form, the use of element-specific detectors in GC-AED (Section 4.2) and PyGC-AED deserves mentioning. [Pg.615]

Spark sources are especially important for metal analysis. To date, medium-voltage sparks (0.5-1 kV) often at high frequencies (1 kHz and more), are used under an argon atmosphere. Spark analyses can be performed in less than 30 s. For accurate analyses, extensive sets of calibration samples must be used, and mathematical procedures may be helpful so as to perform corrections for matrix interferences. In arc and spark emission spectrometry, the spectral lines used are situated in the UV (180-380nm), VIS (380-550nm) and VUV (<180 nm) regions. Atomic emission spectrometry with spark excitation is a standard method for production and product control in the metal industry. [Pg.615]

Applications Spark-source atomic emission and mass spectrometry have been used for routine analysis of solids, particularly for quality assurance and comparative work. As with GD-MS, spark sources are restricted to samples that are, to some extent, electrically conducting, or that can be made conducting by... [Pg.616]

Principles and Characteristics The original idea of spark-source mass spectrometry (SSMS) is due to Dempster [356], long before the first commercial instruments. In spark-source MS, atomisation and ionisation... [Pg.650]

Applications Real applications of spark-source MS started on an empirical basis before fundamental insights were available. SSMS is now considered obsolete in many areas, but various unique applications for a variety of biological substances and metals are reported. Usually, each application requires specific sample preparation, sparking procedure and ion detection. SSMS is now used only in a few laboratories worldwide. Spark-source mass spectrometry is still attractive for certain applications (e.g. in the microelectronics industry). This is especially so when a multi-element survey analysis is required, for which the accuracy of the technique is sufficient (generally 15-30% with calibration or within an order of magnitude without). SSMS is considered to be a... [Pg.651]

Table 8.60 shows the main features of GD-MS. Whereas d.c.-GD-MS is commercial, r.f.-GD-MS lacks commercial instruments, which limits spreading. Glow discharge is much more reliable than spark-source mass spectrometry. GD-MS is particularly valuable for studies of alloys and semiconductors [371], Detection limits at the ppb level have been reported for GD-MS [372], as compared to typical values of 10 ppm for GD-AES. The quantitative performance of GD-MS is uncertain. It appears that 5 % quantitative results are possible, assuming suitable standards are available for direct comparison of ion currents [373], Sources of error that may contribute to quantitative uncertainty include sample inhomogeneity, spectral interferences, matrix differences and changes in discharge conditions. [Pg.651]

SS-AES Sliding spark-source atomic emission spectrometry... [Pg.760]

Table 5.6 compares the ICP-AES results with data generated for the same sample by two other independent methods - isotope dilution spark source mass spectrometry (IDSSMS), and graphite furnace atomic absorption spectrometry (GFAAS). The IDSSMS method also uses 25-fold preconcentration of the metals and matrix separation using the ion exchange procedure, following isotope... [Pg.258]

Precision expressed as 95% confidence intervals Spark source mass spectrometry, internal standard method From [735]... [Pg.259]


See other pages where Spectrometry spark source is mentioned: [Pg.660]    [Pg.660]    [Pg.45]    [Pg.527]    [Pg.530]    [Pg.598]    [Pg.598]    [Pg.622]    [Pg.625]    [Pg.771]    [Pg.49]    [Pg.55]    [Pg.614]    [Pg.615]    [Pg.648]    [Pg.649]    [Pg.650]    [Pg.650]    [Pg.651]    [Pg.760]    [Pg.27]    [Pg.159]    [Pg.259]    [Pg.259]   
See also in sourсe #XX -- [ Pg.36 ]




SEARCH



Analysis of rare earth matrices by spark source mass spectrometry

Elemental mass spectrometry spark source

J Conzemius, Analysis of rare earth matrices by spark source mass spectrometry

Source spectrometry

Spark

Spark source

Spark source mass spectrometry SSMS)

Spark source mass spectrometry analytical performance

Spark source mass spectrometry detection limits

Spark source mass spectrometry principle

Spark source mass spectrometry sample preparation

Spark source mass spectrometry sample requirements

Spark source mass spectrometry technology

Spark source mass spectrometry trace element survey analyses

Spark-source mass spectrometry

Spark-source optical emission spectrometry

Sparking

Trace elements spark source mass spectrometry

© 2024 chempedia.info