Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvent systems chloride

Here we can say that POClJ is the characteristic acid, and Cl- the characteristic base of the POCl3 solvent system. Chloride donors are therefore bases, and chloride acceptors acids in POCl3. Many covalent chlorides have the capacity both to donate and to accept Cl-, and a scale of donor/acceptor strength can be set up from studies in POCl3. [Pg.332]

Hbls Process. Chemische Werke Huls AG has developed a process to produce soda ash and hydrochloric acid from salt via an amine—solvent system (12). A potential advantage of the Huls process is that, under some market conditions, hydrochloric acid may be more easily sold than either ammonium or calcium chloride. [Pg.524]

Akzo Process. Akzo Zout Chemie has developed a route to vinyl chloride and soda ash from salt usiag an amine—solvent system catalyzed by a copper—iodide mixture (13). This procedure theoretically requires half the energy of the conventional Solvay processes. [Pg.524]

CeUulose triacetate is insoluble in acetone, and other solvent systems are used for dry extmsion, such as chlorinated hydrocarbons (eg, methylene chloride), methyl acetate, acetic acid, dimethylformamide, and dimethyl sulfoxide. Methylene chloride containing 5—15% methanol or ethanol is most often employed. Concerns with the oral toxicity of methylene chloride have led to the recent termination of the only triacetate fiber preparation faciHty in the United States, although manufacture stiH exists elsewhere in the world (49). [Pg.296]

An alternative polymerization process utilizes a slurry of calcium chloride in NMP as the polymerization medium. The solubiHty of calcium chloride is only 6% at 20°C however, the salt continues to dissolve as conversion of monomers to polymer proceeds and calcium chloride/polyamide complexes are formed. Polymer molecular weight is further increased by the addition of /V, /V- dim ethyl a n i1 in e as an acid acceptor. This solvent system produces fiber-forming polymer of molecular weights comparable to that formed in HMPA/NMP. [Pg.65]

Oxidation. Maleic and fumaric acids are oxidized in aqueous solution by ozone [10028-15-6] (qv) (85). Products of the reaction include glyoxyhc acid [298-12-4], oxalic acid [144-62-7], and formic acid [64-18-6], Catalytic oxidation of aqueous maleic acid occurs with hydrogen peroxide [7722-84-1] in the presence of sodium tungstate(VI) [13472-45-2] (86) and sodium molybdate(VI) [7631-95-0] (87). Both catalyst systems avoid formation of tartaric acid [133-37-9] and produce i j -epoxysuccinic acid [16533-72-5] at pH values above 5. The reaction of maleic anhydride and hydrogen peroxide in an inert solvent (methylene chloride [75-09-2]) gives permaleic acid [4565-24-6], HOOC—CH=CH—CO H (88) which is useful in Baeyer-ViUiger reactions. Both maleate and fumarate [142-42-7] are hydroxylated to tartaric acid using an osmium tetroxide [20816-12-0]/io 2LX.e [15454-31 -6] catalyst system (89). [Pg.452]

Membrane stmcture is a function of the materials used (polymer composition, molecular weight distribution, solvent system, etc) and the mode of preparation (solution viscosity, evaporation time, humidity, etc). Commonly used polymers include cellulose acetates, polyamides, polysulfones, dynels (vinyl chloride-acrylonitrile copolymers) and poly(vinyhdene fluoride). [Pg.294]

Aqueous salt solutions such as saturated 2inc chloride [7646-85-7] or calcium thiocyanate [2092-16-2] can dissolve limited amounts of cellulose (87). Two non-aqueous salt solutions are ammonium thiocyanate [1762-95-4]— uoamonia. and lithium chloride /744Z-4/A/—dimethyl acetamide [127-19-5]. Solutions up to about 15% can be made with these solvents. Trifluoroacetic acid [76-05-17—methylene chloride [75-09-2] and /V-methy1morpho1ine N-oxide [7529-22-8]—(92—94) are two other solvent systems that have been studied (95). [Pg.243]

This polymer can be prepared from p-phenylenediamine and terephthaloyl chloride. The polymer is highly crystalline and, thus, difficult to keep in solution. Sufficiently high molecular weight polymers can be obtained by solution polymerization using a special solvent system. This ridged rod polymer can form a liquid crystalline solutions.7,9 14... [Pg.186]

Preparation of siloxane-carbonate segmented copolymers by interfacial polymerization involves the reaction of carboxypropyl-terminated siloxane oligomers with bisphenol-A and phosgene, in the presence of a strong base and a phase transfer catalyst, in water/methylene chloride solvent system l50 192), as shown in Reaction Scheme XIV. [Pg.37]

There are some problems associated with the use of functional derivatives of carboxylic acids. Long-chain acid anhydrides are not commercially available, and one half of the acylation reagent is not utilized. Acyl chlorides require the use of tertiary base catalysts, whose double role has been explained before. Some of the intermediate acyl ammonium compounds formed are, however, insoluble in the solvent system. Examples include RCO - N+EtsCL in LiCl/DMAc, where RCO refers to the propionyl, hexanoyl, and stearoyl moiety, respectively. Hexanoyl- and stearoyl-pyridinium chlorides are also insoluble in the same solvent system [185]. [Pg.131]

As previously discussed, solvents that dissolve cellulose by derivatization may be employed for further functionahzation, e.g., esterification. Thus, cellulose has been dissolved in paraformaldehyde/DMSO and esterified, e.g., by acetic, butyric, and phthalic anhydride, as well as by unsaturated methacrylic and maleic anhydride, in the presence of pyridine, or an acetate catalyst. DS values from 0.2 to 2.0 were obtained, being higher, 2.5 for cellulose acetate. H and NMR spectroscopy have indicated that the hydroxyl group of the methy-lol chains are preferably esterified with the anhydrides. Treatment of celliflose with this solvent system, at 90 °C, with methylene diacetate or ethylene diacetate, in the presence of potassium acetate, led to cellulose acetate with a DS of 1.5. Interestingly, the reaction with acetyl chloride or activated acid is less convenient DMAc or DMF can be substituted for DMSO [215-219]. In another set of experiments, polymer with high o -celliflose content was esterified with trimethylacetic anhydride, 1,2,4-benzenetricarboylic anhydride, trimellitic anhydride, phthalic anhydride, and a pyridine catalyst. The esters were isolated after 8h of reaction at 80-100°C, or Ih at room temperature (trimellitic anhydride). These are versatile compounds with interesting elastomeric and thermoplastic properties, and can be cast as films and membranes [220]. [Pg.138]

The solvent system N2O4/DMF has been employed for the preparation of inorganic esters, e.g., phosphates and sulfates [221] as well as organic esters. The latter products were obtained by reacting the polymer with acyl chlorides, or acid anhydrides in the presence of a pyridine base. The nitrite ester formed has been successfully trans-esterified by the reaction with RCOCl... [Pg.138]

To promote phase transfer in the toluene/H20 solvent system, 1 drop of Aliquat 336 (tricaprylmethylammonium chloride, Aldrich) was added. For kinetic studies, aliquots (0.1 ruL) were withdrawn by syringe at timed intervals (20-360 s)... [Pg.234]

A moderate diastereoselectivity was observed in these reactions where a mixture of diastereomers could be generated.58 The reactivity of the halides followed the order of tertiary > secondary primary and iodide> bromide (chlorides did not react). The preferred solvent system was aqueous ethanol. The process was suggested to proceed by a free radical mechanism occurring on the metal surface under sonochemical conditions. Efforts to trap the intermediate [A] intramolecularly gave only a very low yield of the cyclization product (Scheme 10.4).59... [Pg.324]

A similar technique, the so-called spontaneous emulsification solvent diffusion method, is derived from the solvent injection method to prepare liposomes [161]. Kawashima et al. [162] used a mixed-solvent system of methylene chloride and acetone to prepare PLGA nanoparticles. The addition of the water-miscible solvent acetone results in nanoparticles in the submicrometer range this is not possible with only the water-immiscible organic solvent. The addition of acetone decreases the interfacial tension between the organic and the aqueous phase and, in addition, results in the perturbation of the droplet interface because of the rapid diffusion of acetone into the aqueous phase. [Pg.275]

Carbodiimides are, in general, useful compounds for effecting certain dehydrative condensations, e.g., in the formation of amides, esters, and anhydrides. These two crystalline water-soluble carbodiimides are especially useful in the synthesis of peptides and in the modification of proteins. The excess of reagent and the co-product (the corresponding urea) are easily separated from products with limited solubility in water. The hydrochloride is best employed in nonaqueous solvents (methylene chloride, acetonitrile, dimethylformamide). The methiodide is relatively stable in neutral aqueous systems, and thus is recommended for those media. [Pg.44]

B. 2,2-(Trimethylenedithio)cyclohexanone. A solution of 3.02 g. (0.02 mole) of freshly distilled 1-pyrrolidinocyclohexene, 8.32 g. (0.02 mole) of trimethylene dithiotosylate4 (Note 2), and 5 ml. of triethylamine (Note 3) in 40 ml. of anhydrous acetonitrile (Note 4), is refluxed for 12 hours in a 100-ml., round-bottom flask under a nitrogen atmosphere. The solvent is removed under reduced pressure on a rotary evaporator, and the residue is treated with 100 ml. of aqueous 0.1 N hydrochloric acid for 30 minutes at 50° (Note 5). The mixture is cooled to ambient temperature and extracted with three 50-ml. portions of ether. The combined ether extracts are washed with aqueous 10% potassium bicarbonate solution (Note 6) until the aqueous layer remains basic to litmus, and then with saturated sodium chloride solution. The ethereal solution is dried over anhydrous sodium sulfate, filtered, and concentrated on a rotary evaporator. The resulting oily residue is diluted with 1 ml. of benzene and then with 3 ml. of cyclohexane. The solution is poured into a chromatographic column (13 x 2.5 cm.), prepared with 50 g. of alumina (Note 7) and a 3 1 mixture of cyclohexane and benzene. With this solvent system, the desired product moves with the solvent front, and the first 250 ml. of eluent contains 95% of the total product. Elution with a further 175 ml. of solvent removes the remainder. The combined fractions are evaporated, and the pale yellow, oily residue crystallizes readily on standing. Recrystallization of this material from pentane gives 1.82 g. of white crystalline 2,2-(trimethylenedithio)cyclo-hexanone, m.p. 52-55° (45% yield) (Note 8). [Pg.20]


See other pages where Solvent systems chloride is mentioned: [Pg.351]    [Pg.454]    [Pg.65]    [Pg.10]    [Pg.444]    [Pg.14]    [Pg.44]    [Pg.359]    [Pg.547]    [Pg.284]    [Pg.117]    [Pg.117]    [Pg.130]    [Pg.45]    [Pg.18]    [Pg.899]    [Pg.21]    [Pg.149]    [Pg.347]    [Pg.430]    [Pg.258]    [Pg.283]    [Pg.186]    [Pg.226]    [Pg.245]    [Pg.127]    [Pg.11]    [Pg.518]    [Pg.196]    [Pg.206]    [Pg.19]    [Pg.372]   
See also in sourсe #XX -- [ Pg.193 , Pg.194 , Pg.195 , Pg.196 , Pg.197 , Pg.198 , Pg.199 , Pg.200 , Pg.201 ]




SEARCH



Solvents chloride

© 2024 chempedia.info