Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvent separation process,

The clay-cataly2ed iatermolecular condensation of oleic and/or linoleic acid mixtures on a commercial scale produces approximately a 60 40 mixture of dimer acids and higher polycarboxyUc acids) and monomer acids (C g isomerized fatty acids). The polycarboxyUc acid and monomer fractions are usually separated by wiped-film evaporation. The monomer fraction, after hydrogenation, can be fed to a solvent separative process that produces commercial isostearic acid, a complex mixture of saturated fatty acids that is Hquid at 10°C. Dimer acids can be further separated, also by wiped-film evaporation, iato distilled dimer acids and trimer acids. A review of dimerization gives a comprehensive discussion of the subject (10). [Pg.115]

The foremost separation process is crude distillation and in second place, if deeper conversion is envisaged, solvent extraction (deasphalting). [Pg.367]

Dinitrophenylhydra2ones usually separate in well-formed crystals. These can be filtered at the pump, washed with a diluted sample of the acid in the reagent used, then with water, and then (when the solubility allows) with a small quantity of ethanol the dried specimen is then usually pure. It should, however, be recrystallised from a suitable solvent, a process which can usually be carried out with the dinitrophenylhydrazones of the simpler aldehydes and ketones. Many other hydrazones have a very low solubility in most solvents, and a recrystallisation which involves prolonged boiling with a large volume of solvent may be accompanied by partial decomposition, and with the ultimate deposition of a sample less pure than the above washed, dried and unrecrystal-lised sample. [Pg.264]

Extraction of C-8 Aromatics. The Japan Gas Chemical Co. developed an extraction process for the separation of -xylene [106-42-3] from its isomers using HF—BF as an extraction solvent and isomerization catalyst (235). The highly reactive solvent imposes its own restrictions but this approach is claimed to be economically superior to mote conventional separation processes (see Xylenes and ethylbenzene). [Pg.79]

The sohd can be contacted with the solvent in a number of different ways but traditionally that part of the solvent retained by the sohd is referred to as the underflow or holdup, whereas the sohd-free solute-laden solvent separated from the sohd after extraction is called the overflow. The holdup of bound hquor plays a vital role in the estimation of separation performance. In practice both static and dynamic holdup are measured in a process study, other parameters of importance being the relationship of holdup to drainage time and percolation rate. The results of such studies permit conclusions to be drawn about the feasibihty of extraction by percolation, the holdup of different bed heights of material prepared for extraction, and the relationship between solute content of the hquor and holdup. If the percolation rate is very low (in the case of oilseeds a minimum percolation rate of 3 x 10 m/s is normally required), extraction by immersion may be more effective. Percolation rate measurements and the methods of utilizing the data have been reported (8,9) these indicate that the effect of solute concentration on holdup plays an important part in determining the solute concentration in the hquor leaving the extractor. [Pg.88]

Israel Mining Industries developed a process in which hydrochloric acid, instead of sulfuric acid, was used as the acidulant (37). The acidulate contained dissolved calcium chloride which then was separated from the phosphoric acid by use of solvent extraction using a recyclable organic solvent. The process was operated commercially for a limited time, but the generation of HCl fumes was destmctive to production equipment. [Pg.225]

Separation Processes. The product of ore digestion contains the rare earths in the same ratio as that in which they were originally present in the ore, with few exceptions, because of the similarity in chemical properties. The various processes for separating individual rare earth from naturally occurring rare-earth mixtures essentially utilize small differences in acidity resulting from the decrease in ionic radius from lanthanum to lutetium. The acidity differences influence the solubiUties of salts, the hydrolysis of cations, and the formation of complex species so as to allow separation by fractional crystallization, fractional precipitation, ion exchange, and solvent extraction. In addition, the existence of tetravalent and divalent species for cerium and europium, respectively, is useful because the chemical behavior of these ions is markedly different from that of the trivalent species. [Pg.543]

Battery breaking technologies use wet classification to separate the components of cmshed batteries. Before cmshing, the sulfuric acid is drained from the batteries. The sulfuric acid is collected and stored for use at a later stage in the process, or it may be upgraded by a solvent extraction process for reuse in battery acid. [Pg.49]

An improved solvent extraction process, PUREX, utilizes an organic mixture of tributyl phosphate solvent dissolved in a hydrocarbon diluent, typically dodecane. This was used at Savannah River, Georgia, ca 1955 and Hanford, Washington, ca 1956. Waste volumes were reduced by using recoverable nitric acid as the salting agent. A hybrid REDOX/PUREX process was developed in Idaho Falls, Idaho, ca 1956 to reprocess high bum-up, fuUy enriched (97% u) uranium fuel from naval reactors. Other separations processes have been developed. The desirable features are compared in Table 1. [Pg.202]

The early developments of solvent processing were concerned with the lubricating oil end of the cmde. Solvent extraction processes are appHed to many usefiil separations in the purification of gasoline, kerosene, diesel fuel, and other oils. In addition, solvent extraction can replace fractionation in many separation processes in the refinery. For example, propane deasphalting (Fig. 7) has replaced, to some extent, vacuum distillation as a means of removing asphalt from reduced cmde oils. [Pg.208]

The actual solvent extraction processes used, including the specific extractants and the order in which the components are separated, vary from refinery to refinery. However, a typical scheme is shown in Figure 3 (12). [Pg.169]

Zone refining is one of a class of techniques known as fractional solidification in which a separation is brought about by crystallization of a melt without solvent being added (see also Crystallization) (1 8). SoHd—Hquid phase equiUbria are utilized, but the phenomena are much more complex than in separation processes utilizing vapor—Hquid equiHbria. In most of the fractional-solidification techniques described in the article on crystallization, small separate crystals are formed rapidly in a relatively isothermal melt. In zone refining, on the other hand, a massive soHd is formed slowly and a sizable temperature gradient is imposed at the soHd—Hquid interface. [Pg.446]

Isolation. Isolation procedures rely primarily on solubiHty, adsorption, and ionic characteristics of the P-lactam antibiotic to separate it from the large number of other components present in the fermentation mixture. The penicillins ate monobasic catboxyHc acids which lend themselves to solvent extraction techniques (154). Pencillin V, because of its improved acid stabiHty over other penicillins, can be precipitated dkecdy from broth filtrates by addition of dilute sulfuric acid (154,156). The separation process for cephalosporin C is more complex because the amphoteric nature of cephalosporin C precludes dkect extraction into organic solvents. This antibiotic is isolated through the use of a combination of ion-exchange and precipitation procedures (157). The use of neutral, macroporous resins such as XAD-2 or XAD-4, allows for a more rapid elimination of impurities in the initial steps of the isolation (158). The isolation procedure for cephamycin C also involves a series of ion exchange treatments (103). [Pg.31]

There are essentially four steps or unit operations in the manufacture of fatty acids from natural fats and oils (/) batch alkaline hydrolysis or continuous high pressure hydrolysis (2) separation of the fatty acids usually by a continuous solvent crystallisation process or by the hydrophilisation process (J) hydrogenation, which converts unsaturated fatty acids to saturated fatty acids and (4) distillation, which separates components by their boiling points or vapor pressures. A good review of the production of fatty acids has been given (1). [Pg.89]

There are two commercial solvent crystaUi2ation processes. The Emersol Process, patented in 1942 by Emery Industries, uses methanol as solvent and the Armour-Texaco Process, patented in 1948, uses acetone as solvent. The fatty acids to be separated are dissolved in the solvent and cooled, usually in a double-pipe chiller. Internal scrapers rotating at low rpm remove the crystals from the chilled surface. The slurry is then separated by means of a rotary vacuum filter. The filter cake is sprayed with cold solvent to remove free Hquid acids, and the solvents are removed by flash evaporation and steam stripping and recovered for reuse (10). [Pg.90]

Because there is no azeotrope, these mixtures could be separated without adding a solvent. This, however, would be a difficult and expensive separation. Thus there is no minimum feed ratio (minimum solvent flow) and the only way to determine the optimal solvent-to-process feed ratio is by determining the sequence cost over a range of feed ratios. The best reflux ratios are again 1.2—1.5 times the minimum. [Pg.189]

Deviations from Raonlt s law in solution behavior have been attributed to many charac teristics such as molecular size and shape, but the strongest deviations appear to be due to hydrogen bonding and electron donor-acceptor interac tions. Robbins [Chem. Eng. Prog., 76(10), 58 (1980)] presented a table of these interactions. Table 15-4, that provides a qualitative guide to solvent selection for hqnid-hqnid extraction, extractive distillation, azeotropic distillation, or even solvent crystallization. The ac tivity coefficient in the liquid phase is common to all these separation processes. [Pg.1452]

Winstein suggested that two intermediates preceding the dissociated caibocation were required to reconcile data on kinetics, salt effects, and stereochemistry of solvolysis reactions. The process of ionization initially generates a caibocation and counterion in proximity to each other. This species is called an intimate ion pair (or contact ion pair). This species can proceed to a solvent-separated ion pair, in which one or more solvent molecules have inserted between the caibocation and the leaving group but in which the ions have not diffused apart. The free caibocation is formed by diffusion away from the anion, which is called dissociation. [Pg.270]


See other pages where Solvent separation process, is mentioned: [Pg.76]    [Pg.1498]    [Pg.5712]    [Pg.76]    [Pg.1498]    [Pg.5712]    [Pg.123]    [Pg.587]    [Pg.351]    [Pg.78]    [Pg.250]    [Pg.373]    [Pg.454]    [Pg.75]    [Pg.85]    [Pg.202]    [Pg.167]    [Pg.411]    [Pg.564]    [Pg.144]    [Pg.227]    [Pg.359]    [Pg.318]    [Pg.41]    [Pg.372]    [Pg.91]    [Pg.91]    [Pg.110]    [Pg.347]    [Pg.1247]    [Pg.1448]    [Pg.2000]    [Pg.2001]    [Pg.2004]   


SEARCH



Alternative Solvents for Separation Processes

Plutonium processing Solvent separation process,

Processing separation

Selection of Solvents for Other Separation Processes

Separation of process solvent

Separation processes

Separation/purification methods solvent extraction processes

Solvent separate

© 2024 chempedia.info