Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvent extraction solid-liquid

Solvent extraction, solid-liquid sorption, ion exchange, and precipitation methods are commonly used for the separation or preconcentration of precious metals from various matrices. [Pg.3837]

There are two types of solvent extraction solid-liquid and liquid-liquid extraction. The former, often called leaching, is the process of removing a substance from a mixture of solids by mixing with a liquid (the solvent) in which the substance it is required to separate is dissolved. Liquid-liquid extraction is based on the same principle, but in this case a solution of a dissolved substance is intimately mixed with another liquid (the solvent). If the two liquids are immiscible, two separate liquid layers are formed when the mixture is allowed to settle, the dissolved substance being concentrated in the second liquid. The liquid now containing the dissolved substance is called the rich layer or extract and the remaining spent layer is called the raffinate. In many cases one of the solvents used is water, and these are termed aqueous extractions. Solvents commonly used in conjunction with water are chloroform, carbon tetrachloride, ethylene dichloride, benzene, toluene, xylene, and petroleum ethers. [Pg.77]

Diethylstilbestrol is particularly difficult to quantitate below 1.0 ppb in bovine tissues, especially in liver, which is among the last tissues to contain diethystilbestrol after cattle are withdrawn from receiving tire drug (101, 102). Interferences from tissue matrix constitute a major problem that might be due to nonspecific interference of lipids and fatty compounds (103, 104). In addition, problems with false-positive results often appear in urine analysis unless a chromatographic step such as a solid-phase extraction cleanup (105, 106) is introduced. Simple sample preparation procedures such as those based on solvent extraction and liquid-liquid partitioning do not usually give satisfactory results (107, 108). [Pg.852]

In this introductory book chapter, several modem extraction techniques will be described, including supercritical fluid extraction, pressurized liquid extraction, pressurized hot Avater extraction, microwave assisted extraction, membrane-assisted solvent extraction, solid phase micro extraction and stir-bar sorptive extraction. These are techniques that meet many of today s requirements in terms of environmental sustainability, speed and automation. Basic principles of operation as well as method optimization will be discussed and compared for the different techniques. Both analytical and industrial applications will be discussed, together with commercial instruments available on the market. Key references will be given, and conclusions regarding applicability of the different techniques with respect to sample e, target-molecules and analytical vs. large-scale applications. [Pg.10]

Sampling, sample handling, and storage and sample preparation methods are extensively covered, and modern methods such as accelerated solvent extraction, solid-phase microextraction (SPME), QuEChERS, and microwave techniques are included. Instrumentation, the analysis of liquids and solids, and applications of NMR are discussed in detail. A section on hyphenated NMR techniques is included, along with an expanded section on MRI and advanced imaging. The IR instrumentation section is focused on FTIR instrumentation. Absorption, emission, and reflectance spectroscopy are discussed, as is ETIR microscopy. ATR has been expanded. Near-IR instrumentation and applications are presented, and the topic of chemometrics is introduced. Coverage of Raman spectroscopy includes resonance Raman, surface-enhanced Raman, and Raman microscopy. [Pg.1241]

Extraction often constitutes the key step of sample preparation it is also the most delicate. No matter what extraction mode is chosen (e.g., liquid-liquid extraction, accelerated solvent extraction, solid phase extraction), it is optimized from a matrix known as a blank that is spiked with the molecules to be extracted. [Pg.122]

Liquid-liquid extraction is a process for separating components in solution by their distribution between two immiscible liquid phases. Such a process can also be simply referred to as liquid extraction or solvent extraction however, the latter term may be confusing because it also applies to the leaching of a soluble substance from a solid. [Pg.1448]

In recent decades the development of preconcentration steps to be implemented prior to analytical determinations of trace level compounds has been explored in considerable depth. With a view to eliminating or at least minimising the use of organic solvents used in conventional liquid-liquid extraction, other methodologies have been developed, such as membrane extraction, solid-phase extraction, solid-phase microextraction, etc. [Pg.422]

Refinery product separation falls into a number of common classes namely Main fractionators gas plants classical distillation, extraction (liquid-liquid), precipitation (solvent deasphalting), solid facilitated (Parex(TM), PSA), and Membrane (PRSIM(TM)). This list has been ordered from most common to least common. Main fractionators are required in every refinery. Nearly every refinery has some type of gas plant. Most refineries have classical distillation columns. Liquid-liquid extraction is in a few places. Precipitation, solid facilitated and membrane separations are used in specific applications. [Pg.242]

Introduce a 0.30 pL portion of the solvent extract into the gas chromatograph. It is found that solutions of concentrations greater than 0.3 M are unsuitable as they deposit solid and thus cause a blockage of the 1 jj.L microsyringe used for the injection of the sample. The syringe is flushed several times with the sample solution, filled with the sample to the required volume, excess liquid wiped from the tip of the needle and the sample injected into the chromatograph. [Pg.249]

A new class of solvents called ionic liquids has been developed to meet this need. A typical ionic liquid has a relatively small anion, such as BF4, and a relatively large, organic cation, such as l-butyl-3-methylimidazolium (16). Because the cation has a large nonpolar region and is often asymmetrical, the compound does not crystallize easily and so is liquid at room temperature. However, the attractions between the ions reduces the vapor pressure to about the same as that of an ionic solid, thereby reducing air pollution. Because different cations and anions can be used, solvents can be designed for specific uses. For example, one formulation can dissolve the rubber in old tires so that it can be recycled. Other solvents can be used to extract radioactive waste from groundwater. [Pg.327]

Classical extraction is achieved by mixing the samples with an organic solvent (solid-liquid extraction) such as acetonitrile, methanol, or ethanol, used either in the pure form or as a mixture or aqueous solution." Extraction time can be reduced by sonicating the samples. ... [Pg.78]

General trends are focused on reduced-solvent extractions or adsorption-based methods — enviromnentaUy friendly solvents for both solid and liquid samples. In recent decades, advanced techniques like supercritical fluid extraction (SFE), ° pressurized liquid extraction (PLE)," microwave-assisted extraction (MAE), ultrasound-assisted extraction, countercurrent continued extraction (www.niroinc.com), solid... [Pg.304]

The concept of extractive reaction, which was conceived over 40 years ago, has connections with acid hydrolysis of pentosans in an aqueous medium to give furfural, which readily polymerizes in the presence of an acid. The use of a water-immiscible solvent, such as tetralin allows the labile furfural to be extracted and thus prevents polymerization, increases the yield, and improves the recovery procedures. In the recent past an interesting and useful method has been suggested by Rivalier et al. (1995) for acid-catalysed dehydration of hexoses to 5-hydroxy methyl furfural. Here, a new solid-liquid-liquid extractor reactor has been suggested with zeolites in protonic form like H-Y-faujasite, H-mordenite, H-beta, and H-ZSM-5, in suspension in the aqueous phase and with simultaneous extraction of the intermediate product with a solvent, like methyl Aobutyl ketone, circulating countercurrently. [Pg.144]

The need to understand the fate of pesticides in the environment has necessitated the development of analytical methods for the determination of residues in environmental media. Adoption of methods utilizing instrumentation such as gas chro-matography/mass spectrometry (GC/MS), liquid chromatography/mass spectrometry (LC/MS), liquid chromatography/tandem mass spectrometry (LC/MS/MS), or enzyme-linked immunosorbent assay (ELISA) has allowed the detection of minute amounts of pesticides and their degradation products in environmental samples. Sample preparation techniques such as solid-phase extraction (SPE), accelerated solvent extraction (ASE), or solid-phase microextraction (SPME) have also been important in the development of more reliable and sensitive analytical methods. [Pg.605]

Solid phase extraction (SPE) is a very simple, rapid and reproducible cleanup technique that is now widely accepted as an alternative to the time-consuming liquid-liquid extractions. Additionally, SPE uses relatively small volumes of solvents, and is easy to automate. It is available in a number of different formats, including cartridges, disks, loose material, well plates or SPME using film-coated capillaries. SPE can be considered as an extraction technique when used for isolation and concentration or a cleanup technique when used to remove co-extractives from solvent extracts. The use of SPE for cleanup is discussed later. [Pg.731]

The liquid-liquid interface is not only a boundary plane dividing two immiscible liquid phases, but also a nanoscaled, very thin liquid layer where properties such as cohesive energy, density, electrical potential, dielectric constant, and viscosity are drastically changed along with the axis from one phase to another. The interfacial region was anticipated to cause various specific chemical phenomena not found in bulk liquid phases. The chemical reactions at liquid-liquid interfaces have traditionally been less understood than those at liquid-solid or gas-liquid interfaces, much less than the bulk phases. These circumstances were mainly due to the lack of experimental methods which could measure the amount of adsorbed chemical species and the rate of chemical reaction at the interface [1,2]. Several experimental methods have recently been invented in the field of solvent extraction [3], which have made a significant breakthrough in the study of interfacial reactions. [Pg.361]

Solubilizing all or part of a sample matrix by contacting with liquids is one of the most widely used sample preparation techniques for gases, vapors, liquids or solids. Additional selectivity is possible by distributing the sample between pairs of immiscible liquids in which the analyte and its matrix have different solubilities. Equipment requirements are generally very simple for solvent extraction techniques. Table 8.2 [4,10], and solutions are easy to manipulate, convenient to inject into chromatographic instruments, and even small volumes of liquids can be measured accurately. Solids can be recovered from volatile solvents by evaporation. Since relatively large solvent volumes are used in most extraction procedures, solvent impurities, contaminants, etc., are always a common cause for concern [65,66]. [Pg.891]

The separation of solids from liquids forms an important part of almost all front-end and back-end operations in hydrometallurgy. This is due to several reasons, including removal of the gangue or unleached fraction from the leached liquor the need for clarified liquors for ion exchange, solvent extraction, precipitation or other appropriate processing and the post-precipitation or post-crystallization recovery of valuable solids. Solid-liquid separation is influenced by many factors such as the concentration of the suspended solids the particle size distribution the composition the strength and clarity of the leach liquor and the methods of precipitation used. Some important points of the common methods of solid-liquid separation have been dealt with in Chapter 2. [Pg.460]


See other pages where Solvent extraction solid-liquid is mentioned: [Pg.50]    [Pg.605]    [Pg.1091]    [Pg.188]    [Pg.393]    [Pg.2331]    [Pg.171]    [Pg.152]    [Pg.154]    [Pg.213]    [Pg.60]    [Pg.297]    [Pg.1674]    [Pg.64]    [Pg.334]    [Pg.554]    [Pg.141]    [Pg.304]    [Pg.351]    [Pg.152]    [Pg.154]    [Pg.1202]    [Pg.94]    [Pg.452]    [Pg.729]    [Pg.730]    [Pg.888]    [Pg.461]    [Pg.462]    [Pg.510]    [Pg.24]   
See also in sourсe #XX -- [ Pg.102 ]

See also in sourсe #XX -- [ Pg.102 ]




SEARCH



Liquid solvent extraction

Liquid-solid extraction

Solvent liquids

© 2024 chempedia.info