Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solution-polymerized Solvent

Polylactides, 18 Poly lactones, 18, 43 Poly(L-lactic acid) (PLLA), 22, 41, 42 preparation of, 99-100 Polymer age, 1 Polymer architecture, 6-9 Polymer chains, nonmesogenic units in, 52 Polymer Chemistry (Stevens), 5 Polymeric chiral catalysts, 473-474 Polymeric materials, history of, 1-2 Polymeric MDI (PMDI), 201, 210, 238 Polymerizations. See also Copolymerization Depolymerization Polyesterification Polymers Prepolymerization Repolymerization Ring-opening polymerization Solid-state polymerization Solution polymerization Solvent-free polymerization Step-grown polymerization processes Vapor-phase deposition polymerization acid chloride, 155-157 ADMET, 4, 10, 431-461 anionic, 149, 174, 177-178 batch, 167 bulk, 166, 331 chain-growth, 4 continuous, 167, 548 coupling, 467 Friedel-Crafts, 332-334 Hoechst, 548 hydrolytic, 150-153 influence of water content on, 151-152, 154... [Pg.597]

Monomers may also be polymerized in solution using good or poor solvents for homogeneous and heterogeneous systems, respectively. In solution polymerizations, solvents with low chain transfer constants are used to minimize reduction in chain length. [Pg.187]

Most commonly, the copolymers are applied as solutions and it is therefore convenient to prepare the solutions directly from the monomer by solution polymerization. Solvents used include butanol and xylene. In order that the solution has an acceptable viscosity for application and a satisfactory solids content (usually 40-60%), the molecular weight of the polymer is kept down to about 20000-30000 by the use of relatively high initiator concentrations (about 2% on the monomer) and high temperatures (about 100-140°C). A typical formulation might be as follows ... [Pg.142]

FIGURE 5.13 Basic stirred, jacketed batch reactor. For solution polymerizations, solvent, monomer, and intiator are charged. For suspension polymerization, water and a protective colloid such as poly(vinyl alcohol) form one phase, whereas the monomer and initiator form a second phase. In emulsion polymerization, a water-soluble initiator such as potassium persulfate is used together with a surfactant such as sodium stearate. [Pg.203]

In mass polymerization bulk monomer is converted to polymers. In solution polymerization the reaction is completed in the presence of a solvent. In suspension, dispersed mass, pearl or granular polymerization the monomer, containing dissolved initiator, is polymerized while dispersed in the form of fine droplets in a second non-reactive liquid (usually water). In emulsion polymerization an aqueous emulsion of the monomer in the presence of a water-soluble initiator Is converted to a polymer latex (colloidal dispersion of polymer in water). [Pg.321]

Dimethylformamide [68-12-2] (DME) and dimethyl sulfoxide [67-68-5] (DMSO) are the most commonly used commercial organic solvents, although polymerizations ia y-butyrolactoae, ethyleae carboaate, and dimethyl acetamide [127-19-5] (DMAC) are reported ia the hterature. Examples of suitable inorganic salts are aqueous solutioas of ziac chloride and aqueous sodium thiocyanate solutions. The homogeneous solution polymerization of acrylonitrile foUows the conventional kinetic scheme developed for vinyl monomers (12) (see Polymers). [Pg.277]

Chain transfer is an important consideration in solution polymerizations. Chain transfer to solvent may reduce the rate of polymerization as well as the molecular weight of the polymer. Other chain-transfer reactions may iatroduce dye sites, branching, chromophoric groups, and stmctural defects which reduce thermal stabiUty. Many of the solvents used for acrylonitrile polymerization are very active in chain transfer. DMAC and DME have chain-transfer constants of 4.95-5.1 x lO " and 2.7-2.8 x lO " respectively, very high when compared to a value of only 0.05 x lO " for acrylonitrile itself DMSO (0.1-0.8 X lO " ) and aqueous zinc chloride (0.006 x lO " ), in contrast, have relatively low transfer constants hence, the relative desirabiUty of these two solvents over the former. DME, however, is used by several acryhc fiber producers as a solvent for solution polymerization. [Pg.277]

Solution polymerization of VDE in fluorinated and fluorochlorinated hydrocarbons such as CEC-113 and initiated with organic peroxides (99), especially bis(perfluoropropionyl) peroxide (100), has been claimed. Radiation-induced polymerization of VDE has also been investigated (101,102). Alkylboron compounds activated by oxygen initiate VDE polymerization in water or organic solvents (103,104). Microwave-stimulated, low pressure plasma polymerization of VDE gives polymer film that is <10 pm thick (105). Highly regular PVDE polymer with minimized defect stmcture was synthesized and claimed (106). Perdeuterated PVDE has also been prepared and described (107). [Pg.386]

Other than fuel, the largest volume appHcation for hexane is in extraction of oil from seeds, eg, soybeans, cottonseed, safflower seed, peanuts, rapeseed, etc. Hexane has been found ideal for these appHcations because of its high solvency for oil, low boiling point, and low cost. Its narrow boiling range minimises losses, and its low benzene content minimises toxicity. These same properties also make hexane a desirable solvent and reaction medium in the manufacture of polyolefins, synthetic mbbers, and some pharmaceuticals. The solvent serves as catalyst carrier and, in some systems, assists in molecular weight regulation by precipitation of the polymer as it reaches a certain molecular size. However, most solution polymerization processes are fairly old it is likely that those processes will be replaced by more efficient nonsolvent processes in time. [Pg.406]

Solution Polymerization. Two solution polymerization technologies ate practiced. Processes of the first type utilize heavy solvents those of the second use molten PE as the polymerization medium (57). Polyethylene becomes soluble ia saturated C —hydrocarbons above 120—130°C. Because the viscosity of HDPE solutions rapidly iacrease with molecular weight, solution polymerization is employed primarily for the production of low mol wt resias. Solution process plants were first constmcted for the low pressure manufacture of PE resias ia the late 1950s they were later exteasively modified to make their operatioa economically competitive. [Pg.386]

Solution Polymerization. Two types of solution polymerization technologies are used for LLDPE synthesis. One process utilizes heavy solvents the other is carried out in mixtures of supercritical ethylene and molten PE as a polymerization medium. Original solution processes were introduced for low pressure manufacture of PE resins in the late 1950s subsequent improvements of these processes gradually made them economically competitive with later, more advanced technologies. [Pg.399]

Solution Polymerization. In this process an inert solvent is added to the reaction mass. The solvent adds its heat capacity and reduces the viscosity, faciUtating convective heat transfer. The solvent can also be refluxed to remove heat. On the other hand, the solvent wastes reactor space and reduces both rate and molecular weight as compared to bulk polymerisation. Additional technology is needed to separate the polymer product and to recover and store the solvent. Both batch and continuous processes are used. [Pg.437]

Solution polymerization can use various solvents, primarily aUphatic and aromatic hydrocarbons. The choice of solvent is usually dictated by cost, avaHabihty, solvency, toxicity, flammabiUty, and polymer stmcture. SSBR polymerization depends on recovery and reuse of the solvent for economical operation as well as operation under the air-quaUty perrnitting of the local, state, and federal mandates involved. [Pg.494]

Anionic polymerization offers fast polymerization rates on account of the long life-time of polystyryl carbanions. Early studies have focused on this attribute, most of which were conducted at short reactor residence times (< 1 h), at relatively low temperatures (10—50°C), and in low chain-transfer solvents (typically benzene) to ensure that premature termination did not take place. Also, relatively low degrees of polymerization (DP) were typically studied. Continuous commercial free-radical solution polymerization processes to make PS, on the other hand, operate at relatively high temperatures (>100° C), at long residence times (>1.5 h), utilize a chain-transfer solvent (ethylbenzene), and produce polymer in the range of 1000—1500 DP. [Pg.517]

Solution Polymerization. Solution polymerization of vinyl acetate is carried out mainly as an intermediate step to the manufacture of poly(vinyl alcohol). A small amount of solution-polymerized vinyl acetate is prepared for the merchant market. When solution polymerization is carried out, the solvent acts as a chain-transfer agent, and depending on its transfer constant, has an effect on the molecular weight of the product. The rate of polymerization is also affected by the solvent but not in the same way as the degree of polymerization. The reactivity of the solvent-derived radical plays an important part. Chain-transfer constants for solvents in vinyl acetate polymerizations have been tabulated (13). Continuous solution polymers of poly(vinyl acetate) in tubular reactors have been prepared at high yield and throughput (73,74). [Pg.465]

Solution Polymerization. In solution polymerization, a solvent for the monomer is often used to obtain very uniform copolymers. Polymerization rates ate normally slower than those for suspension or emulsion PVC. Eor example, vinyl chloride, vinyl acetate, and sometimes maleic acid are polymerized in a solvent where the resulting polymer is insoluble in the solvent. This makes a uniform copolymer, free of suspending agents, that is used in solution coatings (99). [Pg.502]

Solution Polymerization. This method is not commercially important, although it is convenient and practical, because it provides viscous cements that are difficult to handle. Also, the choice of the solvent is a key parameter due to the high solvent chain-transfer constants for acrylates. [Pg.474]

AGE-Gontaining Elastomers. The manufacturing process for ECH—AGE, ECH—EO—AGE, ECH—PO—AGE, and PO—AGE is similar to that described for the ECH and ECH—EO elastomers. Solution polymerization is carried out in aromatic solvents. Slurry systems have been reported for PO—AGE (39,40). When monomer reactivity ratios are compared, AGE (and PO) are approximately 1.5 times more reactive than ECH. Since ECH is slightly less reactive than PO and AGE and considerably less reactive than EO, background monomer concentration must be controlled in ECH—AGE, ECH—EO—AGE, and ECH—PO—AGE synthesis in order to obtain a uniform product of the desired monomer composition. This is not necessary for the PO—AGE elastomer, as a copolymer of the same composition as the monomer charge is produced. AGE content of all these polymers is fairly low, less than 10%. Methods of molecular weight control, antioxidant addition, and product work-up are similar to those used for the ECH polymers described. [Pg.555]

Solution Polymerization These processes may retain the polymer in solution or precipitate it. Polyethylene is made in a tubular flow reactor at supercritical conditions so the polymer stays in solution. In the Phillips process, however, after about 22 percent conversion when the desirable properties have been attained, the polymer is recovered and the monomer is flashed off and recyled (Fig. 23-23 ). In another process, a solution of ethylene in a saturated hydrocarbon is passed over a chromia-alumina catalyst, then the solvent is separated and recyled. Another example of precipitation polymerization is the copolymerization of styrene and acrylonitrile in methanol. Also, an aqueous solution of acrylonitrile makes a precipitate of polyacrylonitrile on heating to 80°C (176°F). [Pg.2102]

The chemical structure of SBR is given in Fig. 4. Because butadiene has two carbon-carbon double bonds, 1,2 and 1,4 addition reactions can be produced. The 1,2 addition provides a pendant vinyl group on the copolymer chain, leading to an increase in Tg. The 1,4 addition may occur in cis or trans. In free radical emulsion polymerization, the cis to trans ratio can be varied by changing the temperature (at low temperature, the trans form is favoured), and about 20% of the vinyl pendant group remains in both isomers. In solution polymerization the pendant vinyl group can be varied from 10 to 90% by choosing the adequate solvent and catalyst system. [Pg.586]

Chemical Reactivity - Reactivity with Water No reaction Reactivity with Common Materials Corrosive, particularly when diluted. Attacks most common metals, including most stainless steels. Excellent solvent for many synthetic resins or rubber Stability During Transport Stable Neutralizing Agents for Acids and Caustics Dilute with water, rinse with sodium bicarbonate solution Polymerization Not pertinent Inhibitor of Polymerization Not pertinent. [Pg.2]

Through these processes dissolved substances and/or finely dispersed particles can be separated from liquids. All five technologies rely on membrane transport, the passage of solutes or solvents through thin, porous polymeric membranes. [Pg.335]

The principal production methods for acrylamide polymers are polymerization in aqueous solutions, mixed solvent solutions, and various dispersed phases. [Pg.65]

In solution polymerization, an organic solvent dissolves the monomer. Solvents should have low chain transfer activity to minimize chain transfer reactions that produce low-molecular-weight polymers. The presence of a solvent makes heat and viscosity control easier than in bulk polymerization. Removal of the solvent may not be necessary in certain applications such as coatings and adhesives. [Pg.316]

Polyacrylics are produced by copolymerizing acrylonitrile with other monomers such as vinyl acetate, vinyl chloride, and acrylamide. Solution polymerization may be used where water is the solvent in the presence of a redox catalyst. Free radical or anionic initiators may also be used. The produced polymer is insoluble in water and precipitates. Precipitation polymerization, whether self nucleation or aggregate nucleation, has been reviewed by Juba. The following equation is for an acrylonitrile polymer initiated by a free radical ... [Pg.369]


See other pages where Solution-polymerized Solvent is mentioned: [Pg.134]    [Pg.17]    [Pg.276]    [Pg.134]    [Pg.17]    [Pg.276]    [Pg.362]    [Pg.397]    [Pg.167]    [Pg.278]    [Pg.280]    [Pg.65]    [Pg.66]    [Pg.265]    [Pg.324]    [Pg.240]    [Pg.400]    [Pg.403]    [Pg.419]    [Pg.420]    [Pg.521]    [Pg.3]    [Pg.346]    [Pg.589]    [Pg.1105]    [Pg.67]    [Pg.67]   
See also in sourсe #XX -- [ Pg.158 , Pg.191 ]




SEARCH



Polymeric solutions

Polymeric solvents

Polymerization solution polymerizations

Polymerizing solvent

Solution polymerization

Solutions solvents

Solvent solution polymerization

Solvents polymerization

© 2024 chempedia.info