Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solutions nonvolatile

Feed temperature, flow rate, and solute (nonvolatile) concentrations are some of the parameters commonly studied in VMD. [Pg.529]

Colligative Properties of Solutions Nonvolatile Nonelectrolyte Solutions... [Pg.391]

In this section, we discuss colligative properties of three types of solute—nonvolatile nonelectrolytes, volatile nonelectrolytes, and strong electrolytes. [Pg.408]

It seems appropriate to assume the applicability of equation (A2.1.63) to sufficiently dilute solutions of nonvolatile solutes and, indeed, to electrolyte species. This assumption can be validated by other experimental methods (e.g. by electrochemical measurements) and by statistical mechanical theory. [Pg.360]

The fonnation of clusters in the gas phase involves condensation of the vapour of the constituents, with the exception of the electrospray source [6], where ion-solvent clusters are produced directly from a liquid solution. For rare gas or molecular clusters, supersonic beams are used to initiate cluster fonnation. For nonvolatile materials, the vapours can be produced in one of several ways including laser vaporization, thennal evaporation and sputtering. [Pg.2388]

CAUTION. Ethers that have been stored for long periods, particularly in partly-filled bottles, frequently contain small quantities of highly explosive peroxides. The presence of peroxides may be detected either by the per-chromic acid test of qualitative inorganic analysis (addition of an acidified solution of potassium dichromate) or by the liberation of iodine from acidified potassium iodide solution (compare Section 11,47,7). The peroxides are nonvolatile and may accumulate in the flask during the distillation of the ether the residue is explosive and may detonate, when distilled, with sufficient violence to shatter the apparatus and cause serious personal injury. If peroxides are found, they must first be removed by treatment with acidified ferrous sulphate solution (Section 11,47,7) or with sodium sulphite solution or with stannous chloride solution (Section VI, 12). The common extraction solvents diethyl ether and di-tso-propyl ether are particularly prone to the formation of peroxides. [Pg.315]

Minimizing Chemical Interferences The quantitative analysis of some elements is complicated by chemical interferences occurring during atomization. The two most common chemical interferences are the formation of nonvolatile compounds containing the analyte and ionization of the analyte. One example of a chemical interference due to the formation of nonvolatile compounds is observed when P04 or AP+ is added to solutions of Ca +. In one study, for example, adding 100 ppm AP+ to a solution of 5 ppm Ca + decreased the calcium ion s absorbance from 0.50 to 0.14, whereas adding 500 ppm POp to a similar solution of Ca + decreased the absorbance from 0.50 to 0.38. These interferences were attributed to the formation of refractory particles of Ca3(P04)2 and an Al-Ca-O oxide. [Pg.419]

Preparing a Volatile Sample Gas chromatography can be used to separate analytes in complex matrices. Not every sample that can potentially be analyzed by GG, however, can be injected directly into the instrument. To move through the column, the sample s constituents must be volatile. Solutes of low volatility may be retained by the column and continue to elute during the analysis of subsequent samples. Nonvolatile solutes condense on the column, degrading the column s performance. [Pg.567]

For nonvolatile or thermally labile samples, a solution of the substance to be examined is applied to the emitter electrode by means of a microsyringe outside the ion source. After evaporation of the solvent, the emitter is put into the ion source and the ionizing voltage is applied. By this means, thermally labile substances, such as peptides, sugars, nucleosides, and so on, can be examined easily and provide excellent molecular mass information. Although still FI, this last ionization is referred to specifically as field desorption (FD). A comparison of FI and FD spectra of D-glucose is shown in Figure 5.6. [Pg.26]

The efficiency of separation of solvent from solute varies with their nature and the rate of flow of liquid from the HPLC into the interface. Volatile solvents like hexane can be evaporated quickly and tend not to form large clusters, and therefore rates of flow of about 1 ml/min can be accepted from the HPLC apparatus. For less-volatile solvents like water, evaporation is slower, clusters are less easily broken down, and maximum flow rates are about 0.1-0.5 ml/min. Because separation of solvent from solute depends on relative volatilities and rates of diffusion, the greater the molecular mass difference between them, the better is the efficiency of separation. Generally, HPLC is used for substances that are nonvolatile or are thermally labile, as they would otherwise be analyzed by the practically simpler GC method the nonvolatile substances usually have molecular masses considerably larger than those of commonly used HPLC solvents, so separation is good. [Pg.79]

Suitable inlets commonly used for liquids or solutions can be separated into three major classes, two of which are discussed in Parts A and C (Chapters 15 and 17). The most common method of introducing the solutions uses the nebulizer/desolvation inlet discussed here. For greater detail on types and operation of nebulizers, refer to Chapter 19. Note that, for all samples that have been previously dissolved in a liquid (dissolution of sample in acid, alkali, or solvent), it is important that high-purity liquids be used if cross-contamination of sample is to be avoided. Once the liquid has been vaporized prior to introduction of residual sample into the plasma flame, any nonvolatile impurities in the liquid will have been mixed with the sample itself, and these impurities will appear in the results of analysis. The problem can be partially circumvented by use of blanks, viz., the separate examination of levels of residues left by solvents in the absence of any sample. [Pg.104]

Aerosols can be produced as a spray of droplets by various means. A good example of a nebulizer is the common household hair spray, which produces fine droplets of a solution of hair lacquer by using a gas to blow the lacquer solution through a fine nozzle so that it emerges as a spray of small droplets. In use, the droplets strike the hair and settle, and the solvent evaporates to leave behind the nonvolatile lacquer. For mass spectrometry, a spray of a solution of analyte can be produced similarly or by a wide variety of other methods, many of which are discussed here. Chapters 8 ( Electrospray Ionization ) and 11 ( Thermospray and Plasmaspray Interfaces ) also contain details of droplet evaporation and formation of ions that are relevant to the discussion in this chapter. Aerosols are also produced by laser ablation for more information on this topic, see Chapters 17 and 18. [Pg.138]

Discussion of the concepts and procedures involved in designing packed gas absorption systems shall first be confined to simple gas absorption processes without compHcations isothermal absorption of a solute from a mixture containing an inert gas into a nonvolatile solvent without chemical reaction. Gas and Hquid are assumed to move through the packing in a plug-flow fashion. Deviations such as nonisotherma1 operation, multicomponent mass transfer effects, and departure from plug flow are treated in later sections. [Pg.23]

Generalizations. Several generalizations can be made regarding taste (16,26). A substance must be in water solution, eg, the Hquid bathing the tongue (sahva), to have taste. Water solubiUty is the first requirement of the taste stimulus (12). The typical stimuli are concentrated aqueous solution in contrast with the Hpid-soluble substances which act as stimuli for olfaction (22). Many taste substances are hydrophilic, nonvolatile molecules (15). Taste detection thresholds for lipophilic molecules tend to be lower than those of their hydrophilic counterparts (16). [Pg.11]

Monofluorophosphoric Acid. Monofluorophosphoric acid (1) is a colorless, nonvolatile, viscous Hquid having practically no odor. On cooling it does not crystallize but sets to a rigid glass at —78°C. It has a density of = 1.818 g/mL. Little decomposition occurs up to 185°C under vacuum but it caimot be distilled. An aqueous solution shows the normal behavior of a dibasic acid the first neutralization point in 0.05 N solution is at pH 3.5 and the second at pH 8.5. Conductance measurements, however, indicate H2PO2F behaves as a monobasic acid in aqueous solution (59). The... [Pg.225]

Toxicity. Sodium fluoroacetate is one of the most effective all-purpose rodenticides known (18). It is highly toxic to all species of rats tested and can be used either in water solution or in bait preparations. Its absence of objectionable taste and odor and its delayed effects lead to its excellent acceptance by rodents. It is nonvolatile, chemically stable, and not toxic or irritating to the unbroken skin of workers. Rats do not appear to develop any significant tolerance to this compound from nonlethal doses. However, it is extremely dangerous to humans, to common household pets, and to farm animals, and should only be used by experienced personnel. The rodent carcasses should be collected and destroyed since they remain poisonous for a long period of time to any animal that eats them. [Pg.307]

Fig. 9. SEM photographs of cellulose acetate membranes cast from a solution of acetone (volatile solvent) and 2-meth5l-2,4-pentanediol (nonvolatile solvent). The evaporation time before the stmcture is fixed by immersion ia water is shown (24). Fig. 9. SEM photographs of cellulose acetate membranes cast from a solution of acetone (volatile solvent) and 2-meth5l-2,4-pentanediol (nonvolatile solvent). The evaporation time before the stmcture is fixed by immersion ia water is shown (24).
Evaporation. Evaporation can be used to separate volatile compounds from nonvolatile components and often is used to remove residual moisture or solvents from soHds or semisoHds. Thin-film evaporators and dryers are examples of evaporation equipment used for this type of appHcation. Some evaporators are also appropriate for aqueous solutions. [Pg.162]

Cesium forms simple alkyl and aryl compounds that are similar to those of the other alkah metals (6). They are colorless, sohd, amorphous, nonvolatile, and insoluble, except by decomposition, in most solvents except diethylzinc. As a result of exceptional reactivity, cesium aryls should be effective in alkylations wherever other alkaline alkyls or Grignard reagents have failed (see Grignard reactions). Cesium reacts with hydrocarbons in which the activity of a C—H link is increased by attachment to the carbon atom of doubly linked or aromatic radicals. A brown, sohd addition product is formed when cesium reacts with ethylene, and a very reactive dark red powder, triphenylmethylcesium [76-83-5] (C H )2CCs, is formed by the reaction of cesium amalgam and a solution of triphenylmethyl chloride in anhydrous ether. [Pg.375]

There is no specific color or other reaction by which methyl chloride can be detected or identified. QuaUty testing of methyl chloride for appearance, water content, acidity, nonvolatile residue, residual odor, methanol, and acetone is routinely done by production laboratories. Water content is determined with Kad Fischer reagent using the apparatus by Kieselbach (55). Acidity is determined by titration with alcohoHc sodium hydroxide solution. The nonvolatile residue, consisting of oil or waxy material, is determined by evaporating a sample of the methyl chloride at room temperature. The residue is examined after evaporation for the presence of odor. Methanol and acetone content are determined by gas chromatography. [Pg.516]

When the concentration of dissolved coal exceeds about 5% of the solution by weight, the extracted material resembles the parent coal in composition and some properties. The extract consists of the smaller molecules within the range of the parent coal. Recovered extract is relatively nonvolatile and high melting. A kinetic study of coal dissolution indicated increasing heats of activation for increasing amounts of dissolved coal (69). [Pg.223]

Microemulsions, temporary emulsions, that is, two-layer haH dressHigs, and clear solutions of nonvolatile lubricants are on the market. HaH tonics, usually hydro-alcohoHc, achieve similar effects by including Hpid substances or synthetic em ollients, such as the mono butyl ethers of polypropylene oxides [9003-13-8] (10—50 mol). The primary benefits of these Hpid-based products are lubrication and improvements Hi haH gloss and hair-hoi ding (dressHig)... [Pg.300]


See other pages where Solutions nonvolatile is mentioned: [Pg.441]    [Pg.458]    [Pg.441]    [Pg.458]    [Pg.356]    [Pg.1097]    [Pg.210]    [Pg.420]    [Pg.438]    [Pg.484]    [Pg.68]    [Pg.106]    [Pg.140]    [Pg.244]    [Pg.278]    [Pg.530]    [Pg.25]    [Pg.26]    [Pg.478]    [Pg.515]    [Pg.65]    [Pg.65]    [Pg.296]    [Pg.234]    [Pg.398]    [Pg.279]    [Pg.459]    [Pg.64]    [Pg.408]   
See also in sourсe #XX -- [ Pg.222 ]




SEARCH



Activity of nonvolatile solutes

Electrolyte solutes nonvolatile

Nonelectrolytes nonvolatile nonelectrolyte solutions

Nonvolatile

Nonvolatile Solutes, Boiling-Point Elevation

Nonvolatile nonelectrolyte solutions

Nonvolatile nonelectrolyte solutions colligative properties

Nonvolatile nonelectrolyte solutions, colligative

Nonvolatile solute

Nonvolatile solute

Nonvolatile solutes in water

Nonvolatile solutes, activities

Nonvolatile solutes, phase equilibrium

Phase Equilibrium in Solutions Nonvolatile Solutes

Properties of Nonvolatile Nonelectrolyte Solutions

The Activities of Nonvolatile Solutes

Vapor pressure nonvolatile solute

© 2024 chempedia.info