Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solutions, concentrated dilute

Real solutions do not obey Raoult s law at all concentrations, but they do follow Raoult s law in the limit of low solute concentration (dilute solution). [Pg.98]

Gibbs equation of surface concentration This equation relates the surface tension (y) of a solution and the amount (T) of the solute adsorbed at unit area of the surface. For a single non-ionic solute in dilute solution the equation approximates to... [Pg.189]

Derive the equation of state, that is, the relationship between t and a, of the adsorbed film for the case of a surface active electrolyte. Assume that the activity coefficient for the electrolyte is unity, that the solution is dilute enough so that surface tension is a linear function of the concentration of the electrolyte, and that the electrolyte itself (and not some hydrolyzed form) is the surface-adsorbed species. Do this for the case of a strong 1 1 electrolyte and a strong 1 3 electrolyte. [Pg.95]

This subject has a long history and important early papers include those by Deijaguin and Landau [29] (see Ref. 30) and Langmuir [31]. As noted by Langmuir in 1938, the total force acting on the planes can be regarded as the sum of a contribution from osmotic pressure, since the ion concentrations differ from those in the bulk, and a force due to the electric field. The total force must be constant across the gap and since the field, d /jdx is zero at the midpoint, the total force is given the net osmotic pressure at this point. If the solution is dilute, then... [Pg.180]

A logical division is made for the adsorption of nonelectrolytes according to whether they are in dilute or concentrated solution. In dilute solutions, the treatment is very similar to that for gas adsorption, whereas in concentrated binary mixtures the role of the solvent becomes more explicit. An important class of adsorbed materials, self-assembling monolayers, are briefly reviewed along with an overview of the essential features of polymer adsorption. The adsorption of electrolytes is treated briefly, mainly in terms of the exchange of components in an electrical double layer. [Pg.390]

Industrially. phosphoric(V) acid is manufactured by two processes. In one process phosphorus is burned in air and the phos-phorus(V) oxide produced is dissolved in water. It is also manufactured by the action of dilute sulphuric acid on bone-ash or phosphorite, i.e. calcium tetraoxophosphate(V). Ca3(P04)2 the insoluble calcium sulphate is filtered off and the remaining solution concentrated. In this reaction, the calcium phosphate may be treated to convert it to the more soluble dihydrogenphosphatc. CafHjPOjj. When mixed with the calcium sulphate this is used as a fertiliser under the name "superphosphate . [Pg.246]

Dissolve 3 g. of copper sulphate pentahydrate and 1 g. of sodium chloride in 12 ml. of hot water, and add a solution of 1 g. of sodium bisulphite in 10 ml. of 5 per cent, sodium hydroxide solution. Shake, cool under the tap, and wash the precipitated wlute cuprous chloride with water by decantation. Dissolve the cuprous chloride in a few ml. of concentrated ammonia solution and dilute with water to 10 ml. [Pg.246]

The acetone test reagent consists of a 0 1 per cent, solution of 2 4-dinitro-phenylhydrazine and is prepared as follows Dissolve 0-25 g. of 2 4-dinitrophenyl-hydrazine in 60 ml. of water and 42 ml. of concentrated hydrochloric acid by warming on a water bath cool the clear yellow solution and dilute to 250 ml. with water. The acetone test is considered negative when 5 ml. of the reagent and 4-5 drops of the distillate give no cloudiness or precipitate of acetone 2 4-dinitro-phenylhydrazone within 30 seconds. After a negative test is obtained, it is stron y recommended that the mixture in the flask be refluxed for 5-10 minutes with complete condensation and then to collect a few drops of distillate for another test. If no acetone is now detected, the reduction is complete. [Pg.884]

If much sodium bromide is present in the crude acetylmethylurea, this will not dissolve in the concentrated hydrochloric acid it dissolves, however, when the solution is diluted and has no effect upon the subsequent treatment with sodium nitrite. [Pg.972]

Study of the solubility behaviour of the compound. A semi-quantitative study of the solubility of the substance in a hmited number of solvents (water, ether, dilute sodium hydroxide solution, dilute hydrochloric acid, sodium bicarbonate solution, concentrated sulphuric and phosphoric acid) will, if intelligently apphed, provide valuable information as to the presence or absence of certain classes of organic compounds. [Pg.1027]

The solute concentration should be above 0 2M in dilute solution K increases from 39-7 to about 50. [Pg.1037]

Separations based upon differences in the chemical properties of the components. Thus a mixture of toluene and anihne may be separated by extraction with dilute hydrochloric acid the aniline passes into the aqueous layer in the form of the salt, anihne hydrochloride, and may be recovered by neutralisation. Similarly, a mixture of phenol and toluene may be separated by treatment with dilute sodium hydroxide. The above examples are, of comse, simple apphcations of the fact that the various components fah into different solubihty groups (compare Section XI,5). Another example is the separation of a mixture of di-n-butyl ether and chlorobenzene concentrated sulphuric acid dissolves only the w-butyl other and it may be recovered from solution by dilution with water. With some classes of compounds, e.g., unsaturated compounds, concentrated sulphuric acid leads to polymerisation, sulphona-tion, etc., so that the original component cannot be recovered unchanged this solvent, therefore, possesses hmited apphcation. Phenols may be separated from acids (for example, o-cresol from benzoic acid) by a dilute solution of sodium bicarbonate the weakly acidic phenols (and also enols) are not converted into salts by this reagent and may be removed by ether extraction or by other means the acids pass into solution as the sodium salts and may be recovered after acidification. Aldehydes, e.g., benzaldehyde, may be separated from liquid hydrocarbons and other neutral, water-insoluble hquid compounds by shaking with a solution of sodium bisulphite the aldehyde forms a sohd bisulphite compound, which may be filtered off and decomposed with dilute acid or with sodium bicarbonate solution in order to recover the aldehyde. [Pg.1091]

Alkali solutions and dilute and concentrated acids attack the metal rapidly. The pure metal is likely to ignite if scratched with a knife. [Pg.173]

After adding p-rosaniline and formaldehyde, the colored solution was diluted to 25 ml in a volumetric flask. The absorbance was measured at 569 nm in a 1-cm cell, yielding a value of 0.485. A standard sample was prepared by substituting a 1.00-mL sample of a standard solution containing the equivalent of 15.00 ppm SO2 for the air sample. The absorbance of the standard was found to be 0.181. Report the concentration of SO2 in the air in parts per million. The density of air maybe taken as 1.18 g/L. [Pg.453]

The second difficulty, degradation, required the development of a two-step polyamidation process following salt formation (157). During salt formation, tetramethylenediammonium adipate salt is formed in water solution at approximately 50% concentration or at a higher concentration in a suspension. As in nylon-6,6 manufacture, this salt solution, when diluted, permits easy adjustment of the stoichiometry of the reactants by means of pH measurement. [Pg.235]

Stannous Chloride Dihydrate. A white crystalline soHd, stannous chloride dihydrate is prepared either by treatment of granulated tin with hydrochloric acid followed by evaporation and crystallisation or by reduction of a stannic chloride solution with a cathode or tin metal followed by crystallisation. It is soluble in methanol, ethyl acetate, glacial acetic acid, sodium hydroxide solution, and dilute or concentrated hydrochloric acid. It is soluble in less than its own weight of water, but with much water it forms an insoluble basic salt. [Pg.65]

This anomalous pH behavior results from the presence of polyborates, which dissociate into B(OH)2 and B(OH) as the solutions are diluted. Below pH of about 9 the solution pH increases on dilution the inverse is tme above pH 9. This is probably because of the combined effects of a shift in the equihbrium concentration of polymeric and monomeric species and their relative acidities. At a Na20 B202 mol ratio equal to 0.41 at pH 8.91, or K20 B202 mol ratio equal to 0.405 at pH 9 the pH is independent of concentration. This ratio and the pH associated with it have been termed the isohydric point of borate solutions (62). [Pg.195]

Povidone—iodine is a brown, water-soluble powder containing approximately 10% iodine. However, the amount of free iodine, which is responsible for the antimicrobial activity, is low in a concentrated solution, but is released as the solution is diluted (41). Concentrated solutions have actually been contaminated with bacteria (42). For use as an antiseptic, povidine—iodine is diluted with water or alcohol to a concentration of 1% iodine. Detergents are added if it is used as a surgical scmb. lodophors are important as broad-spectmm antiseptics for the skin, although they do not have the persistent action of some other antiseptics. They are also used as disinfectants for clinical thermometers that have been used by tuberculous patients, for surface disinfection of tables, etc, and for clean equipment in hospitals, food plants, and dairies, much as chlorine disinfectants are used. [Pg.123]

For predic ting diffiisivities in binary polar or associating liquid systems at liign solute dilution, the method of Wilke and Chang " defined in Eq. (2-156) can be utilized. The Tyn and Cains equation (2-152) can be used to determine the molar volume of the solute at the normal boihng point. Errors average 20 percent, with occasional errors of 35 percent. The method is not considered to be accurate above a solute concentration of 5 mole percent. [Pg.415]

For systems in which the solute concentrations in the gas and hquid phases are dilute, the rate of transfer may be expressed by equations which predic t that the rate of mass transfer is proportional to the difference between the bulk concentration and the concentration at the gas-liquid interface. Thus... [Pg.600]

Selectivity. The relative separation, or selectivity, Ot of a solvent is the ratio of two components in the extraction-solvent phase divided by the ratio of the same components in the feed-solvent phase. The separation power of a hquid-liquid system is governed by the deviation of Ot from unity, analogous to relative volatility in distillation. A relative separation Ot of 1.0 gives no separation of the components between the two liquid phases. Dilute solute concentrations generally give the highest relative separation factors. [Pg.1453]

Procedure To an aliquot of the sample solution containing 12.5 - 305 p.g of platinum(IV) were added 5 ml of hydrochloric acid - sodium acetate buffer of pH 2.1, 1 ml of O.IM Cu(II) sulphate solution, and 3.0 ml of 0.5% propericiazine solution. The solution was diluted to 25 ml with distilled water, mixed thoroughly, and the absorbance measured at 520 nm against a reagent blank solution after 10 min. The platinum concentration of the sample solution was determined using a standar d calibration curve. [Pg.117]

The working conditions of the immunosensor (enzyme and antigen concentrations, dilutions of the antibodies, pH of the buffer solution) were found. The cholinesterase immobilized demonstrated the maximum catalytic activity in phosphate buffer solution with pH 8.0. The analytical chai acteristics of the sensor - the interval of the working concentrations and detection limit - have been obtained. The proposed approach of immunoassay made possible to detect 5T0 mg/ml of the bacterial antigen. [Pg.329]

C. i-Melhyllhiol-yphthalamidapropane-2,2,-dicarboxylic Acid. —A solution of 25 g. (0.066 mole) of the above ester in 30 cc. of 95 per cent alcohol is heated on the steam bath in a 200-cc. round-bottomed flask, and 70 cc. of 5 A sodium hydroxide is added. The cloudy liquid is heated until a sample gives a clear solution on dilution with water this occurs after about two hours. The solution is then chilled to 0 and cautiously neutralized to Congo red with 0.2 N hydrochloric acid, whereupon 75 cc. of 5 A hydrochloric acid is slowly added, the temperature being maintained at 0°. The acid separates as colorless crystals. This separation is completed by the slow addition of 60 cc. of concentrated hydrochloric acid (sp. gr. 1.19). The product is filtered by suction and v ashed free of salt with small quantities of ice-cold water. After drying in vacuo, the yield amounts to 21.5-22 g. (95.5-98 per cent of the theoretical amount) of a product melting at 141-143°. [Pg.59]

C. Palladium chloride on carhon (5% Pd). A solution of 8.2 g. (0.046 mole) of palladium chloride in 20 ml. (0.24 mole) of concentrated hydrochloric acid and 50 ml. of water is prepared (Note 2). The solution is diluted with 140 ml. of water and poured over 92 g. of nitric acid-washed Darco G-60 (Note 10) in an 8-in. evaporating dish (Note 3). After the palladium chloride solution has been thoroughly mixed with the carbon, the whole mixture is dried, first on a steam bath and then in an oven at 100°, with occasional mixing until completely dry. The mass (98-100 g.) is powdered and stored in a closed bottle. [Pg.78]

Pernod is a transparent yellow fluid consisting of water, alcohol and Evil Esters. The Evil Esters dissolve in strong water-alcohol solutions but precipitate out as tiny whitish droplets if the solution is diluted with more water. It is observed that Pernod turns cloudy at 60 wt% water at 0°C, at 70 wt% water at 20°C, and at 85 wt% water at 40°C. Using axes of T and concentration of water in wt%, sketch an approximate phase diagram (Fig. A1.3) for the Pernod-water system, indicating the single-phase and two-phase fields. [Pg.328]

Solution A dilution method was employed to achieve correct antifoam concentration. An injection... [Pg.309]


See other pages where Solutions, concentrated dilute is mentioned: [Pg.140]    [Pg.824]    [Pg.31]    [Pg.150]    [Pg.251]    [Pg.268]    [Pg.455]    [Pg.456]    [Pg.538]    [Pg.575]    [Pg.327]    [Pg.564]    [Pg.171]    [Pg.389]    [Pg.487]    [Pg.479]    [Pg.1464]    [Pg.1535]    [Pg.1689]    [Pg.157]    [Pg.240]    [Pg.59]   
See also in sourсe #XX -- [ Pg.211 , Pg.219 ]




SEARCH



Concentrated solutions

Concentrating solutions

Concentration dilution

Concentrations dilute solutions

Diluted solution, concentration

Diluted solutions

Solute concentration

Solution diluting

Solutions dilution

Solutions solution concentrations

© 2024 chempedia.info