Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solubility thiamin

Water-Soluble Thiamine (vitamin Bj) Thiamine pyrophosphate... [Pg.587]

Thiamin has a very low toxicity (oral LD5o of thiaminchloride hydrochloride in mice 3-15 g/kg body weight). The vitamin is used therapeutically to cure polyneuropathy, beri-beii (clinically manifest thiamin deficiency), and Wernicke-Korsakoff Syndrome ( Wernicke encephalopathy and Korsakoff psychosis). In mild polyneuropathy, 10-20 mg/d water-soluble or 5-10 mg/d lipid-soluble thiamin are given orally. In more severe cases, 20-50 mg/d water-soluble or 10-20 mg/d lipid-soluble thiamin are administered orally. Patients suffering from beri-beri or from early stages of Wernicke-Korsakoff Syndrome receive 50-100 mg of thiamin two times a day for several days subcutaneously or intravenously until symptoms are alleviated. Afterwards, the vitamin is administered orally for several weeks. [Pg.1288]

Volvert, M.L., Seyen, S., Piette, M., et al. (2008) Benfotiamine, a synthetic S-acyl thiamine derivative, has different mechanisms of action and a different pharmacological profile than lipid-soluble thiamine disulfide derivatives. BMC Pharmacol. 8, 10. [Pg.120]

Benfotiamine, a lipid-soluble thiamine (vitamin Bl) derivative, prevents the increase in the intracellular hexosamine pathway and polyol pathway activation during hyperglycaemia [53]. It decreases hyperglycaemia-induced intracellular AGE formation... [Pg.221]

ThTP is synthesized by a chemiosmotic mechanism from ThDP and inorganic phosphate and is hydrolysed by a specific soluble thiamin triphosphatase. [Pg.120]

Description of Method. The water-soluble vitamins Bi (thiamine hydrochloride), B2 (riboflavin), B3 (niacinamide), and Be (pyridoxine hydrochloride) may be determined by CZE using a pH 9 sodium tetraborate/sodlum dIhydrogen phosphate buffer or by MEKC using the same buffer with the addition of sodium dodecyl-sulfate. Detection Is by UV absorption at 200 nm. An Internal standard of o-ethoxybenzamide Is used to standardize the method. [Pg.607]

The thiol form (12) is susceptible to oxidation (see Fig. 2). Iodine treatment regenerates thiamine in good yield. Heating an aqueous solution at pH 8 in air gives rise to thiamine disulfide [67-16-3] (21), thiochrome (14), and other products (22). The disulfide is readily reduced to thiamine in vivo and is as biologically active. Other mixed disulfides, of interest as fat-soluble forms, are formed from thiamine, possibly via oxidative coupling to the thiol form (12). [Pg.86]

Most of the thiamine sold worldwide is used for dietary supplements. Primary market areas include the following appHcations addition to feed formulations, eg, poultry, pigs, catde, and fish (see Feeds and feed additives) fortification of refined foods, eg, flours, rice, and cereal products and incorporation into multivitamins. Small amounts are used in medicine to treat deficiency diseases and other conditions, in agriculture as an additive to ferti1i2ers (qv), and in foods as flavorings. Generally for dry formulations, the less soluble, nonhygroscopic nitrate is preferred. Only the hydrochloride can be used for intravenous purposes. Coated thiamine is used where flavor is a factor. [Pg.93]

An extract from the soluble stromal proteins of purified and intact spinach-leaf chloroplasts was prepared by lysis of the cells in buffer, centrifugation of the suspension of broken cells, and concentration of the supernatant with removal of insoluble material. This extract contained all of the enzymes involved in the condensation of the cyclic moieties of thiamine, thiazole, and pyramine. Thus, the synthesis of thiamine in this extract following the addition of pyramine and putative precursors was a proof that the system had the possibility of building the thiazole. It was found that L-tyrosine was the donor of the C-2 carbon atom of thiazole, as in E. coli. Also, as in E. coli cells, addition of 1 -deoxy-D-f/irco-pen-tulose permitted synthesis of the thiamine structure. The relevant enzymes were localized by gel filtration in a fraction covering the 50- to 350-kDa molecular-mass range. This fraction was able to catalyze the formation of the thiazole moiety of thiamine from 0.1 -mM 1-deoxy-D-t/ireo-pentulose at the rate of 220 pmol per mg of protein per hour, in the presence of ATP and Mg2+. [Pg.277]

The water-soluble vitamins comprise the B complex and vitamin C and function as enzyme cofactors. Fofic acid acts as a carrier of one-carbon units. Deficiency of a single vitamin of the B complex is rare, since poor diets are most often associated with multiple deficiency states. Nevertheless, specific syndromes are characteristic of deficiencies of individual vitamins, eg, beriberi (thiamin) cheilosis, glossitis, seborrhea (riboflavin) pellagra (niacin) peripheral neuritis (pyridoxine) megaloblastic anemia, methyhnalonic aciduria, and pernicious anemia (vitamin Bjj) and megaloblastic anemia (folic acid). Vitamin C deficiency leads to scurvy. [Pg.481]

The water-soluble vitamins of the B complex act as enzyme cofactors. Thiamin is a cofactor in oxidative... [Pg.497]

Micronutrients (mg/100 g) Water-soluble vitamins B-vitamins Thiamin 2.65 3.64 2.00... [Pg.350]

Water-soluble vitamins removed by hemodialysis (HD) contribute to malnutrition and vitamin deficiency syndromes. Patients receiving HD often require replacement of water-soluble vitamins to prevent adverse effects. The vitamins that may require replacement are ascorbic acid, thiamine, biotin, folic acid, riboflavin, and pyridoxine. Patients receiving HD should receive a multivitamin B complex with vitamin C supplement, but should not take supplements that include fat-soluble vitamins, such as vitamins A, E, or K, which can accumulate in patients with renal failure. [Pg.394]

The water-soluble vitamins generally function as cofactors for metabolism enzymes such as those involved in the production of energy from carbohydrates and fats. Their members consist of vitamin C and vitamin B complex which include thiamine, riboflavin (vitamin B2), nicotinic acid, pyridoxine, pantothenic acid, folic acid, cobalamin (vitamin B12), inositol, and biotin. A number of recent publications have demonstrated that vitamin carriers can transport various types of water-soluble vitamins, but the carrier-mediated systems seem negligible for the membrane transport of fat-soluble vitamins such as vitamin A, D, E, and K. [Pg.263]

The recognition of their structure permits the determination of vitamins by the tools of analytical chemistry, but while such methods are widely used in industrial production, the minute quantities in body fluids and tissues limit the purely chemical approach to a few members of this group present in relatively high concentration, e.g., vitamin C (K5). Microchemical methods are in use for the determination of thiamine, riboflavin, and some of the fat-soluble vitamins, based on the most sensitive colorimetric and, in particular, fluorometric techniques. Vitamin D, on the other hand, is determined by animal assay. [Pg.189]

Thiamin (vitamin B-l, 177) when photolysed, gives preparations having a characteristic odour. Photolysis of an aqueous solution with a high-pressure mercury lamp is reported to give the pyrimidine (178) [ 113]. Other work used irradiation at 254 nm and concentrated on the approximately 0.1% yield of ether-soluble odoriferous products. As many as nine compounds have been identified (179), (180), (181), 2-methyl-3-formyl-4,5-dihydrofuran, 3-acetyl-4,5-dihydrofuran, 4-oxopentyl formate, 3-formyl-5-hydroxypentan-2-one, 3-mercapto-2-methyl-4,5-dihydrofuran and bis(4,5-dihydro-2-methylfuran-3-yl)disulphide [114, 115]. [Pg.82]

In an investigation of the water-soluble vitamins in human skin,71 it was found that 15 individuals showed relatively small ranges (less than 2-fold) for vitamin B12, folic acid, and biotin about 2-fold ranges in the cases of riboflavin, niacin, and thiamine about a 4-fold range in the case of ascorbic acid, and more than a 5-fold range in the case of pantothenic acid. In another study72 it was found that the total choline content of normal skin varied in four individuals over approximately a 10-fold range 127 to 1200 ig. per gm. The variation in the free choline in the same individuals was relatively small. [Pg.94]

FIGURE 16 HPLC chromatogram of water-soluble vitamins using ion-pair chromatography. LC conditions and peak identification are shown in the inset.The retention times of basic analytes (pyridoxine and thiamine) are strongly dependent of the concentration of ion-pairing reagent (1-hexanesulfonate) in the mobile phase. Reprinted with permission from Reference 17. [Pg.37]

The SP procedure of water-soluble vitamins from multivitamin tablets is particularly challenging due to the diverse analytes of varied hydrophobicities and pfC. Water-soluble vitamins (WSVs) include ascorbic acid (vitamin C), niacin, niacinamide, pyridoxine (vitamin B ), thiamine (vitamin Bj), folic acid, riboflavin (vitamin B2) and others. While most WSVs are highly water soluble, riboflavin is quite hydrophobic and insoluble in water. Folic acid is acidic while pyridoxine and thiamine are basic. In addition, ascorbic acid is light sensitive and easily oxidized. The extraction strategy employed was a two-step approach using mixed solvents of different polarity and acidity as follows ... [Pg.138]

The complexity of the environment surrounding the coenzyme has prevented most simple model systems from dramatically enhancing thiamine reactivity or specificity [46-48]. Peptide- or protein-based models have the advantage of presenting a reasonably complex environment to the coenzyme functionality within a water soluble, yet synthetically accessible, scaffold. [Pg.19]

The five different coenzymes involved are associated with the enzyme components in different ways. Thiamine diphosphate is non-covalently bound to El, whereas lipoamide is covalently bound to a lysine residue of E2 and FAD is bound as a prosthetic group to E3. NAD" and coenzyme A, being soluble coenzymes, are only temporarily associated with the complex. [Pg.134]

Fig. 3 Electropherogram of five water-soluble vitamines thiamine (cationic), nicotinamide (nonionic), biotin (anionic), ascorbic acid (anionic), and nicotinic acid (anionic) in 20 mM phosphate run buffer at pH 8.0. Fig. 3 Electropherogram of five water-soluble vitamines thiamine (cationic), nicotinamide (nonionic), biotin (anionic), ascorbic acid (anionic), and nicotinic acid (anionic) in 20 mM phosphate run buffer at pH 8.0.
Vitamin deficiency of Bj leads to the disease known as Beriberi. However, nowadays in the Western hemisphere, vitamin Bj deficiency is mainly found as a consequence of extreme alcoholism. In fact, the vitamin absorption by the gut is decreased and its excretion is increased by alcohol. Alcohol also inhibits the activation of vitamin Bj to its coenzyme form, thiamine pyrophosphate ester (TPP). There is no evidence of adverse effects of oral intake of thiamine [417]. The main food sources of vitamin Bj are lean pork, legumes, and cereal grains (germ fraction). It is soluble in water and stable at higher temperature and at pH lower than 5.0, but it is destroyed rapidly by boiling at pH 7.0 or above. [Pg.634]

In the form in which they are consumed, many vitamins are not biologically active. For several water-soluble vitamins such as thiamine, riboflavin, nicotinic acid, pyridoxine, activation includes phosphorylation or, as is the case with riboflavin and nicotinic acid, coupling to purine or pyridine nucleotides is required. In their major known actions, water-soluble vitamins participate as cofactors for specific enzymes, whereas at least two fat-soluble... [Pg.471]

Lipid soluble analogs of thiamine (vitamin Bj) 1126 have a number of therapeutic uses, and examples are acetiamine 1127 (R = Me), bentiamine 1127 (R = Ph), fursultiamine 1128, and octotiamine 1129 which has antiinflammatory activity. [Pg.244]

At low and medium doses, it is well established that the nutritional value of proteins, carbohydrates, and fats as macronutrients are not significantly impaired by irradiation, and neither the mineral bioavailability is impacted. Like all other energy depositing process, the application of ionizing radiation treatment can reduce the levels of certain sensitive vitamins. Nutrient loss can be minimized by irradiating food in a cold or frozen state and under reduced levels of oxygen. Thiamin and ascorbic acid are the most radiation sensitive, water-soluble vitamins, whereas the most sensitive, fat-soluble vitamin is vitamin E. In chilled pork cuts at the 3 kGy maximum at 0-10°C, one may expect about 35 0% loss of thiamin in frozen, uncooked pork meat irradiated at a 7 kGy maximum at —20°C approx., 35 % loss of it can be expected [122]. [Pg.803]

The B-group is a heterogeneous collection of water-soluble vitamins, most of which function as co-enzymes or are precursors of co-enzymes. The B-group vitamins are thiamin, riboflavin, niacin, biotin, pantothenic acid, pyridoxine (and related substances, vitamin B6), folate and cobalamin (and its derivatives, vitamin B12). [Pg.194]


See other pages where Solubility thiamin is mentioned: [Pg.388]    [Pg.388]    [Pg.394]    [Pg.35]    [Pg.85]    [Pg.85]    [Pg.85]    [Pg.86]    [Pg.90]    [Pg.91]    [Pg.462]    [Pg.1288]    [Pg.325]    [Pg.35]    [Pg.376]    [Pg.11]    [Pg.1202]    [Pg.41]    [Pg.264]    [Pg.184]   


SEARCH



Lipid soluble thiamin derivatives

Thiamin lipid soluble analogs

Water-soluble vitamins thiamin

Water-soluble vitamins thiamine (vitamin

© 2024 chempedia.info