Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Peaks identification

Retention time and co-chromatography with reference compounds are a very useful guide to peak identification but require further confirmation and a number of methods have been employed for this purpose including  [Pg.142]

These various methods can be used either separately or in combination (Krstulovic et al., 1978). [Pg.142]

There are two methods for the quantitation of material in chromatographic peaks  [Pg.142]

In 1967, Horvath developed pellicular ion-exchange stationary phases which were both stable and relatively efficient and enabled the apphcation of higher pressures, thereby facilitating the rapid separation of the mono-, di- and triphosphates of cytidine, uridine, adenosine, thymidine and guanosine. The subsequent development of stationary phases based on porous silica has led to a variety of chromatographic modes which are able to rapidly separate nucleosides and their derivatives. [Pg.144]

The HPLC analysis of nucleic acid components can be divided into sections according to the chemical nature of the components. For [Pg.144]

Improvements in column technology, detector sensitivity and the development of new detection systems, have made possible the routine separation of picomole quantities of nucleic acid components in complex physiological matrices. The very sensitivity of most LC systems, however, which is invaluable in the analysis of biological samples, is often the limiting factor because of inadequate or ambiguous identification methods. Although tremendous advances have been made in the on-line combination of HPLC with spectroscopic techniques [e.g., mass spectrometry, Fourier transform infrared (FT/IR), nuclear magnetic resonance], their application has not become routine in most biochemical and biomedical laboratories. [Pg.22]

Faced with the practical problems of determining the chemical nature of chromatographic peaks in biological matrices, multiple identification techniques are used in order to unambiguously identify eluting compounds. These techniques are summarized in Table VI. [Pg.22]

Retention Behavior and Co-Chromatography with Reference Compounds [Pg.22]

The retention behavior of the eluite alone cannot be used for the unambiguous identification of the compound under study. This is especially important in the analysis of physiological fluids where several different compounds in the matrix may have similar retention characteristics. Thus, a comparison of retention times for the eluting compounds with those of reference compounds that have been previously chromatographed under identical conditions, can only be used for tentative identification. For this identification procedure, knowledge of the type of compounds and their relative levels in the sample is usually necessary. [Pg.22]

The reversed-phase chromatographic analysis of a control serum sample is shown in Fig. 10. A majority of the chromatographic peaks in this [Pg.22]

Integration Report Storage Mode-I Overwrite f Merge C Appentl [Pg.139]

The Peak Picking command helps you to identify peaks in your spectra. The command offers high flexibility by allowing you to adjust and fine tune the search parameters. [Pg.139]

The respective dialog box comprises four pages as shown in Fig. 11.13. First, select the spectrum and the spectral region of interest as usual. Then define the Sensitivity on the file selection page. Note that the Sensitivity is the most important parameter for the identification. [Pg.139]

Now you can either choose the interactive mode or switch to the Mode page to continue with the automatic mode. [Pg.139]

Click on the Start interactive mode button to switch to the interactive mode. According to the threshold value set on the slider the Sensitivity and with that the number of identified peaks changes. Two examples for this interactive procedure are shown in Fig. 11.14 a and b. Click on the Store button to save the results of peak picking. [Pg.139]


TOF-SARS and SARIS are capable of detecting all elements by either scattering, recoiling or both teclmiques. TOF peak identification is straightforward by converting equation (Bl.23.lt and equation (B 1.23.81 to the flight times of the scattered and recoiled particles as... [Pg.1812]

Sample is in deionized water. Peak identification (1) (-)-epicatechin, (2) (-i-)-catechin... [Pg.114]

The specialities of chromatographic behaviour of cypermethrin, permethrin, X-cyhalothrin, deltamethrin and fenvalerate were investigated in this work. Gas chromatographic determination was cai ry out with use of packed column with stationai y phase of different polarity (OV-101, OV-210 OV-17) and capillary and polycapillary columns with non-polai ic stationary phase. Chromatographic peak identification was realized with attraction GC-MS method. [Pg.130]

Most EDS systems are controlled by minicomputers or microcomputers and are easy to use for the basic operations of spectrum collection and peak identification, even for the computer illiterate. However, the use of advanced analysis techniques, including deconvolution of overlapped peaks, background subtraction, and quantitative analysis will require some extra training, which usually is provided at installation or available at special schools. [Pg.126]

Reliable quantification is based on peak-search software that combines peak location, peak identification, and element deduction. Element deduction means that, for unambiguous detection, at least two of the principal peaks must be detected for each analyte of interest. In trace analysis, only the strongest peaks can be detected and special attention must be paid to interfering satellites and spurious peaks. [Pg.188]

Analytical information taken from a chromatogram has almost exclusively involved either retention data (retention times, capacity factors, etc.) for peak identification or peak heights and peak areas for quantitative assessment. The width of the peak has been rarely used for analytical purposes, except occasionally to obtain approximate values for peak areas. Nevertheless, as seen from the Rate Theory, the peak width is inversely proportional to the solute diffusivity which, in turn, is a function of the solute molecular weight. It follows that for high molecular weight materials, particularly those that cannot be volatalized in the ionization source of a mass spectrometer, peak width measurement offers an approximate source of molecular weight data for very intractable solutes. [Pg.335]

Figure 10.9 Cliromatogi ams of foitified coconut oil obtained by using (a) normal-phase HPLC and (b) GPC/noimal-phase HPLC. Peak identification is as follows 1 (a,b), DL-a-toco-pheryl acetate, 2 (b), 2,6-di-tert-butyl-4-methylphenol 2 (a) and 3 (b), retinyl acetate 3 (a) and 4 (b), tocol 4 (a) and 5 (b), ergocalciferol. Reprinted from Analytical Chemistry, 60, J. M. Brown-Thomas et al., Determination of fat-soluble vitamins in oil matrices by multidimensional liigh-peiformance liquid cliromatography , pp. 1929-1933, copyright 1988, with permission from the American Chemical Society. Figure 10.9 Cliromatogi ams of foitified coconut oil obtained by using (a) normal-phase HPLC and (b) GPC/noimal-phase HPLC. Peak identification is as follows 1 (a,b), DL-a-toco-pheryl acetate, 2 (b), 2,6-di-tert-butyl-4-methylphenol 2 (a) and 3 (b), retinyl acetate 3 (a) and 4 (b), tocol 4 (a) and 5 (b), ergocalciferol. Reprinted from Analytical Chemistry, 60, J. M. Brown-Thomas et al., Determination of fat-soluble vitamins in oil matrices by multidimensional liigh-peiformance liquid cliromatography , pp. 1929-1933, copyright 1988, with permission from the American Chemical Society.
Figure 10.13 GC clrromatogram obtained after on-line LC-GC(ECD) of a human milk sample analysed for PCBs (attenuation X 64). Peak identification is as follows (1) PCB 28 (2) PCB 118 (3) PCB 153 (4) PCB 138 (5) PCB 180 (6) PCB 170 (7) PCB 207. Reprinted from Journal of High Resolution Chromatography, 20, G. R. van der Hoff et al, Determination of organochlorine compounds in fatty matiices application of normal-phase LC clean-up coupled on-line to GC/ECD , pp. 222-226, 1997, with permission from Wiley-VCH. Figure 10.13 GC clrromatogram obtained after on-line LC-GC(ECD) of a human milk sample analysed for PCBs (attenuation X 64). Peak identification is as follows (1) PCB 28 (2) PCB 118 (3) PCB 153 (4) PCB 138 (5) PCB 180 (6) PCB 170 (7) PCB 207. Reprinted from Journal of High Resolution Chromatography, 20, G. R. van der Hoff et al, Determination of organochlorine compounds in fatty matiices application of normal-phase LC clean-up coupled on-line to GC/ECD , pp. 222-226, 1997, with permission from Wiley-VCH.
Figure 11.12 GC analysis of (a) urine sample spiked with opiates 3 p.g/ml) and (b) blank urine sample. Peak identification is as follows 1, dihydrocodeine 2, codeine 3, ethylmor-phine 4, moipliine 5, heroin. Reprinted from Journal of Chromatography, A 771, T. Hyotylainen et al., Determination of morphine and its analogues in urine by on-line coupled reversed-phase liquied cliromatography-gas clrromatography with on-line derivatization, pp. 360-365, copyright 1997, with permission from Elsevier Science. Figure 11.12 GC analysis of (a) urine sample spiked with opiates 3 p.g/ml) and (b) blank urine sample. Peak identification is as follows 1, dihydrocodeine 2, codeine 3, ethylmor-phine 4, moipliine 5, heroin. Reprinted from Journal of Chromatography, A 771, T. Hyotylainen et al., Determination of morphine and its analogues in urine by on-line coupled reversed-phase liquied cliromatography-gas clrromatography with on-line derivatization, pp. 360-365, copyright 1997, with permission from Elsevier Science.
Figure 11.14 Analysis of amphetamines by GC-NPD following HS-SPME exti action from human hair (a) Normal hair (b) normal hair after addition of amphetamine (1.5 ng) and methamphetamine (16.1 ng) (c) hair of an amphetamine abuser. Peak identification is as follows 1, a-phenethylamine (internal standard) 2, amphetamine 3, methamphetamine 4, N-propyl-/3-phenethyamine (internal standard). Reprinted from Journal of Chronatography, B 707,1. Koide et ai, Determination of amphetamine and methamphetamine in human hair by headspace solid-phase microextraction and gas cliromatography with niti ogen-phosphoms detection, pp. 99 -104, copyright 1998, with permission from Elsevier Science. Figure 11.14 Analysis of amphetamines by GC-NPD following HS-SPME exti action from human hair (a) Normal hair (b) normal hair after addition of amphetamine (1.5 ng) and methamphetamine (16.1 ng) (c) hair of an amphetamine abuser. Peak identification is as follows 1, a-phenethylamine (internal standard) 2, amphetamine 3, methamphetamine 4, N-propyl-/3-phenethyamine (internal standard). Reprinted from Journal of Chronatography, B 707,1. Koide et ai, Determination of amphetamine and methamphetamine in human hair by headspace solid-phase microextraction and gas cliromatography with niti ogen-phosphoms detection, pp. 99 -104, copyright 1998, with permission from Elsevier Science.
Electropherograms of a urine sample (8 ml) spiked with non-steroidal anti-inflammatory drugs (10 p-g/ml each) after direct CE analysis (b) and at-line SPE-CE (c). Peak identification is as follows I, ibuprofen N, naproxen K, ketoprofen P, flurbiprofen. Reprinted from Journal of Chromatography, 6 719, J. R. Veraait et al., At-line solid-phase exti action for capillary electrophoresis application to negatively charged solutes, pp. 199-208, copyright 1998, with permission from Elsevier Science. [Pg.287]

Figure 11.19 SPME-CE analysis of urine samples (a) blank urine (a) directly injected and extracted for (b) 5 (c) 10 and (d) 30 min (b) Urine spiked with barbiturates, extracted for (e) 30 and (f, g) 5 min. Peak identification is as follows 1, pentobaitibal 2, butabarbital 3, secobarbital 4, amobarbital 5, aprobarbital 6, mephobarbital 7, butalbital 8, thiopental. Concenti ations used are 0.15-1.0 ppm (e, f) and 0.05-0.3 ppm (g). Reprinted from Analytical Chemistry, 69, S. Li and S. G. Weber, Determination of barbiturates by solid-phase microexti action and capillary electrophoresis, pp. 1217-1222, copyright 1997, with permission from the American Chemical Society. Figure 11.19 SPME-CE analysis of urine samples (a) blank urine (a) directly injected and extracted for (b) 5 (c) 10 and (d) 30 min (b) Urine spiked with barbiturates, extracted for (e) 30 and (f, g) 5 min. Peak identification is as follows 1, pentobaitibal 2, butabarbital 3, secobarbital 4, amobarbital 5, aprobarbital 6, mephobarbital 7, butalbital 8, thiopental. Concenti ations used are 0.15-1.0 ppm (e, f) and 0.05-0.3 ppm (g). Reprinted from Analytical Chemistry, 69, S. Li and S. G. Weber, Determination of barbiturates by solid-phase microexti action and capillary electrophoresis, pp. 1217-1222, copyright 1997, with permission from the American Chemical Society.
Figure 12.2 Cliromatograms of an ABS copolymer sample (a) microcolumn SEC ti ace (b) capillaiy GC trace of peak x . Peak identification is as follows 1, C,4 alkanes 2, C,5 alkanes 3, C 8 alkanes 4, nonylphenol 5, palmitic acid 6, styrene-acetonitrile firmer 7, stearic acid 8, styrene-acetonitrile trimer 9, Irganox 1076 10, fiinonylphenyl phosphate 11, Ethanox 330. Reprinted with permission from Ref. (12). Figure 12.2 Cliromatograms of an ABS copolymer sample (a) microcolumn SEC ti ace (b) capillaiy GC trace of peak x . Peak identification is as follows 1, C,4 alkanes 2, C,5 alkanes 3, C 8 alkanes 4, nonylphenol 5, palmitic acid 6, styrene-acetonitrile firmer 7, stearic acid 8, styrene-acetonitrile trimer 9, Irganox 1076 10, fiinonylphenyl phosphate 11, Ethanox 330. Reprinted with permission from Ref. (12).
Figure 12.7 Cliromatograms of a polycarbonate sample (a) microcolumn SEC ti ace (b) capillary GC ti ace of inti oduced fractions. SEC conditions fused-silica (30 cm X 250 mm i.d.) packed with PL-GEL (50 A pore size, 5 mm particle diameter) eluent, THE at aElow rate of 2.0ml/min injection size, 200 NL UV detection at 254 nm x represents the polymer additive fraction ti ansfeired to EC system (ca. 6 p-L). GC conditions DB-1 column (15m X 0.25 mm i.d., 0.25 pm film thickness) deactivated fused-silica uncoated inlet (5 m X 0.32 mm i.d.) temperature program, 100 °C for 8 min, rising to 350 °C at a rate of 12°C/min flame ionization detection. Peak identification is as follows 1, 2,4-rert-butylphenol 2, nonylphenol isomers 3, di(4-tert-butylphenyl) carbonate 4, Tinuvin 329 5, solvent impurity 6, Ii gaphos 168 (oxidized). Reprinted with permission from Ref. (14). Figure 12.7 Cliromatograms of a polycarbonate sample (a) microcolumn SEC ti ace (b) capillary GC ti ace of inti oduced fractions. SEC conditions fused-silica (30 cm X 250 mm i.d.) packed with PL-GEL (50 A pore size, 5 mm particle diameter) eluent, THE at aElow rate of 2.0ml/min injection size, 200 NL UV detection at 254 nm x represents the polymer additive fraction ti ansfeired to EC system (ca. 6 p-L). GC conditions DB-1 column (15m X 0.25 mm i.d., 0.25 pm film thickness) deactivated fused-silica uncoated inlet (5 m X 0.32 mm i.d.) temperature program, 100 °C for 8 min, rising to 350 °C at a rate of 12°C/min flame ionization detection. Peak identification is as follows 1, 2,4-rert-butylphenol 2, nonylphenol isomers 3, di(4-tert-butylphenyl) carbonate 4, Tinuvin 329 5, solvent impurity 6, Ii gaphos 168 (oxidized). Reprinted with permission from Ref. (14).
Figure 12.14 Chromatographic analysis of aniline (a) Precolumn chromatogram (the compound represented by the shaded peak is solvent flushed) (b) main column chromatogram without cryotrapping (c) main column chromatogram with ciyottapping. Conditions DCS, two columns and two ovens, with and without ciyottapping facilities columns OV-17 (25 m X 0.32 mm i.d., 1.0 p.m d.f.) and HP-1 (50 m X 0.32 mm, 1.05 p.m df). Peak identification is as follows 1, benzene 2, cyclohexane 3, cyclohexylamine 4, cyclohexanol 5, phenol 6, aniline 7, toluidine 8, nittobenzene 9, dicyclohexylamine. Reprinted with permission from Ref. (20). Figure 12.14 Chromatographic analysis of aniline (a) Precolumn chromatogram (the compound represented by the shaded peak is solvent flushed) (b) main column chromatogram without cryotrapping (c) main column chromatogram with ciyottapping. Conditions DCS, two columns and two ovens, with and without ciyottapping facilities columns OV-17 (25 m X 0.32 mm i.d., 1.0 p.m d.f.) and HP-1 (50 m X 0.32 mm, 1.05 p.m df). Peak identification is as follows 1, benzene 2, cyclohexane 3, cyclohexylamine 4, cyclohexanol 5, phenol 6, aniline 7, toluidine 8, nittobenzene 9, dicyclohexylamine. Reprinted with permission from Ref. (20).
Figure 12.23 SFC-SFC analysis, involving a rotaiy valve interface, of a standard coal tar sample (SRM 1597). Two fractions were collected from the first SFC separation (a) and then analyzed simultaneously in the second SFC system (h) cuts a and h are taken between 20.2 and 21.2 min, and 38.7 and 40.2 min, respectively. Peak identification is as follows 1, tii-phenylene 2, chrysene 3, henzo[g/ i]perylene 4, antliracene. Reprinted from Analytical Chemistry, 62, Z. Juvancz et al, Multidimensional packed capillary coupled to open tubular column supercritical fluid chromatography using a valve-switcliing interface , pp. 1384-1388, copyright 1990, with permission from the American Chemical Society. Figure 12.23 SFC-SFC analysis, involving a rotaiy valve interface, of a standard coal tar sample (SRM 1597). Two fractions were collected from the first SFC separation (a) and then analyzed simultaneously in the second SFC system (h) cuts a and h are taken between 20.2 and 21.2 min, and 38.7 and 40.2 min, respectively. Peak identification is as follows 1, tii-phenylene 2, chrysene 3, henzo[g/ i]perylene 4, antliracene. Reprinted from Analytical Chemistry, 62, Z. Juvancz et al, Multidimensional packed capillary coupled to open tubular column supercritical fluid chromatography using a valve-switcliing interface , pp. 1384-1388, copyright 1990, with permission from the American Chemical Society.
Figure 13.10 LC-LC chromatogram of a surface water sample spiked at 2 p.g 1 with ati azine, and its metabolites (registered at 220 nm). Conditions volume of sample injected, 2 ml clean-up time, 2.60 min ti ansfer time, 4.2 min The blank was subtracted. Peak identification is as follows 1, DIA 2, HA 3, DEA 4, atrazine. Reprinted from Journal of Chromatography, A 778, F. Hernandez et al, New method for the rapid detemiination of triazine herbicides and some of thek main metabolites in water by using coupled-column liquid cliromatography and large volume injection , pp. 171-181, copyright 1997, with permission from Elsevier Science. Figure 13.10 LC-LC chromatogram of a surface water sample spiked at 2 p.g 1 with ati azine, and its metabolites (registered at 220 nm). Conditions volume of sample injected, 2 ml clean-up time, 2.60 min ti ansfer time, 4.2 min The blank was subtracted. Peak identification is as follows 1, DIA 2, HA 3, DEA 4, atrazine. Reprinted from Journal of Chromatography, A 778, F. Hernandez et al, New method for the rapid detemiination of triazine herbicides and some of thek main metabolites in water by using coupled-column liquid cliromatography and large volume injection , pp. 171-181, copyright 1997, with permission from Elsevier Science.
Figure 13.15 Chromatograms obtained by on-line ti ace enrichment of 50 ml of Ebro river water with and without the addition of different volumes of 10% Na2S03 solution for every 100 ml of sample (a) blank with the addition of 1000 p.1 of sulfite (b) spiked with 4 p.g 1 of the analytes and 1000 p.1 of sulfite (c) spiked with 4 p.g 1 of the analytes and 500 p.1 of sulfite (d) spiked with 4 p.g 1 of the analytes without sulfite. Peak identification is as follows 1, oxamyl 2, methomyl 3, phenol 4, 4-niti ophenol 5, 2,4-dinitrophenol 6, 2-chlorophenol 7, bentazone 8, simazine 9, MCPA 10, atrazine. Reprinted from Journal of Chromatography, A 803, N. Masque et ai, New chemically modified polymeric resin for solid-phase extraction of pesticides and phenolic compounds from water , pp. 147-155, copyright 1998, with permission from Elsevier Science. Figure 13.15 Chromatograms obtained by on-line ti ace enrichment of 50 ml of Ebro river water with and without the addition of different volumes of 10% Na2S03 solution for every 100 ml of sample (a) blank with the addition of 1000 p.1 of sulfite (b) spiked with 4 p.g 1 of the analytes and 1000 p.1 of sulfite (c) spiked with 4 p.g 1 of the analytes and 500 p.1 of sulfite (d) spiked with 4 p.g 1 of the analytes without sulfite. Peak identification is as follows 1, oxamyl 2, methomyl 3, phenol 4, 4-niti ophenol 5, 2,4-dinitrophenol 6, 2-chlorophenol 7, bentazone 8, simazine 9, MCPA 10, atrazine. Reprinted from Journal of Chromatography, A 803, N. Masque et ai, New chemically modified polymeric resin for solid-phase extraction of pesticides and phenolic compounds from water , pp. 147-155, copyright 1998, with permission from Elsevier Science.
Figure 13.19 Chromatograms obtained by on-line SPE-GC-MS(SIM) of (a) 10 ml of tap water spiked with pesticides at levels of 0.1 ng 1 (b) 10 ml of a sample of unspiked tap water. Peak identification foi (a) is as follows 1, molinate 2, a-HCH 3, dimethoate 4, simazine 5, ati azine 6, y-HCH 7, S-HCH 8, heptachloi 9, ametiyn 10, prometiyn 11, fen-itrothion 12, aldrin 13, malatliion 14, endo-heptachlor 15, a-endosulfan 16, teti achlor-vinphos 17, dieldrin. Reprinted from Journal of Chromatography, A 818, E. Pocumll et al., On-line coupling of solid-phase exti action to gas cliromatography with mass specti ometiic detection to determine pesticides in water , pp. 85-93, copyright 1998, with permission from Elsevier Science. Figure 13.19 Chromatograms obtained by on-line SPE-GC-MS(SIM) of (a) 10 ml of tap water spiked with pesticides at levels of 0.1 ng 1 (b) 10 ml of a sample of unspiked tap water. Peak identification foi (a) is as follows 1, molinate 2, a-HCH 3, dimethoate 4, simazine 5, ati azine 6, y-HCH 7, S-HCH 8, heptachloi 9, ametiyn 10, prometiyn 11, fen-itrothion 12, aldrin 13, malatliion 14, endo-heptachlor 15, a-endosulfan 16, teti achlor-vinphos 17, dieldrin. Reprinted from Journal of Chromatography, A 818, E. Pocumll et al., On-line coupling of solid-phase exti action to gas cliromatography with mass specti ometiic detection to determine pesticides in water , pp. 85-93, copyright 1998, with permission from Elsevier Science.
Figure 13.20 GC-FID chromatograms of an exuact obtained by (a) SPE and, (b) lASPE of 10 ml of municipal waste water, spiked with 1 p.g 1 of seven s-triazines (c) represents a blank mn from lASPE-GC-NPD of 10 ml of EIPLC water. Peak identification is as follows 1, ati azine 2, terbuthylazine 3, sebuthylazine 4, simetiyn 5, prometiyn 6, terbutiyn 7, dipropetiyn. Reprinted from Journal of Chromatography, A 830, J. Dalliige et al, On-line coupling of immunoaffinity-based solid-phase exUaction and gas chi-omatography for the determination of 5-triazines in aqueous samples , pp. 377-386, copyright 1999, with permission from Elsevier Science. Figure 13.20 GC-FID chromatograms of an exuact obtained by (a) SPE and, (b) lASPE of 10 ml of municipal waste water, spiked with 1 p.g 1 of seven s-triazines (c) represents a blank mn from lASPE-GC-NPD of 10 ml of EIPLC water. Peak identification is as follows 1, ati azine 2, terbuthylazine 3, sebuthylazine 4, simetiyn 5, prometiyn 6, terbutiyn 7, dipropetiyn. Reprinted from Journal of Chromatography, A 830, J. Dalliige et al, On-line coupling of immunoaffinity-based solid-phase exUaction and gas chi-omatography for the determination of 5-triazines in aqueous samples , pp. 377-386, copyright 1999, with permission from Elsevier Science.
Figure 14.7 Typical clnomatogram obtained by using the refinery analyser system shown in Figure 14.6. Peak identification is as follows 1, hydrogen 2, Cg+, 3, propane 4, acetylene 5, propene 6, hydrogen sulfide 6, iso-butane 8, propadiene 9, n-butane, 10. iso-butene 11, 1-butene 12, traw-2-butene 13, cw-2-butene 14, 1,3-butadiene 15, iso-pentane 16, w-pen-tane 17, 1-pentene 18, tro 5-2-pentene 19, cw-2-pentene 20, 2-inethyl-2-butene 21, carbon dioxide 22, ethene 23, ethane 24, oxygen + argon, 25, niti Ogen, 26, carbon monoxide. Figure 14.7 Typical clnomatogram obtained by using the refinery analyser system shown in Figure 14.6. Peak identification is as follows 1, hydrogen 2, Cg+, 3, propane 4, acetylene 5, propene 6, hydrogen sulfide 6, iso-butane 8, propadiene 9, n-butane, 10. iso-butene 11, 1-butene 12, traw-2-butene 13, cw-2-butene 14, 1,3-butadiene 15, iso-pentane 16, w-pen-tane 17, 1-pentene 18, tro 5-2-pentene 19, cw-2-pentene 20, 2-inethyl-2-butene 21, carbon dioxide 22, ethene 23, ethane 24, oxygen + argon, 25, niti Ogen, 26, carbon monoxide.
Figure 14.11 Typical cln omatogram obtained by using the aromatics analyser system. Peak identification is as follows 1, non-aromatics 2, benzene IS, internal standard (MEK) 3, ethylbenzene 4, p-and m-xylenes. Figure 14.11 Typical cln omatogram obtained by using the aromatics analyser system. Peak identification is as follows 1, non-aromatics 2, benzene IS, internal standard (MEK) 3, ethylbenzene 4, p-and m-xylenes.
Figure 14.16 Typical cliromatograms of LC (a) and SFC (b) analysis of aromatics in diesel fuel. Peak identification is as follows 1, total saturates 2, total aromatics 3, mono-aromatics 4, higher-ring aromatics. Figure 14.16 Typical cliromatograms of LC (a) and SFC (b) analysis of aromatics in diesel fuel. Peak identification is as follows 1, total saturates 2, total aromatics 3, mono-aromatics 4, higher-ring aromatics.
Figure 14.19 Typical GC chromatogram of the separated di-aromatics fraction of a middle distillate sample Peak identification is as follows 1, naphthalene 2, 2-methylnaphthalene 3, 1-methylnaphthalene 4, biphenyl 5, C2-naphthalenes 6, C3-naphthalenes 7, C4-naph-thalenes 8, C5+-naphthalenes 9, benzothiophene 10, methylbenzothiophenes 11, C2-ben-zotliiopIrenes. Note the clean baseline between naphthalene and the methylnaphthalenes, which means that no overlap with the previous (mono-aromatics) fraction has occuned. Figure 14.19 Typical GC chromatogram of the separated di-aromatics fraction of a middle distillate sample Peak identification is as follows 1, naphthalene 2, 2-methylnaphthalene 3, 1-methylnaphthalene 4, biphenyl 5, C2-naphthalenes 6, C3-naphthalenes 7, C4-naph-thalenes 8, C5+-naphthalenes 9, benzothiophene 10, methylbenzothiophenes 11, C2-ben-zotliiopIrenes. Note the clean baseline between naphthalene and the methylnaphthalenes, which means that no overlap with the previous (mono-aromatics) fraction has occuned.
Figure 14.21 GC cliromatogram of the dibenzothiophenes fraction of a heavy gas-oil sample. Peak identification is as follows 1, dibenzotliiophene 2, 4-methyldibenzothiophene 3, 2-methyldibenzothiophene 4, 3-methyldibenzothiophene 5, 4,6-dibenzotliiophene 6, other C2-dibenzothiophenes, 7, C3-dibenzothiophenes 8, C4- and liigher dibenzothiophenes. Figure 14.21 GC cliromatogram of the dibenzothiophenes fraction of a heavy gas-oil sample. Peak identification is as follows 1, dibenzotliiophene 2, 4-methyldibenzothiophene 3, 2-methyldibenzothiophene 4, 3-methyldibenzothiophene 5, 4,6-dibenzotliiophene 6, other C2-dibenzothiophenes, 7, C3-dibenzothiophenes 8, C4- and liigher dibenzothiophenes.
Figure 15.1 Separation of pesticides from butter by using LC-GC-ECD. Peak identification is as follows 1, HCB 2, lindane 5, aldrin 7, o,p -DDE 10, endrin 11, o,p -DDT 13, p,p -DDT peaks 3, 4, 6, 8, 9, 12, 14, 15 and 16 were not identified. Adapted from Journal of High Resolution Chromatography, 13, R. Barcarolo, Coupled EC-GC a new method for the on-line analysis of organchlorine pesticide residues in fat , pp. 465-469, 1990, with permission from Wiley-VCH. Figure 15.1 Separation of pesticides from butter by using LC-GC-ECD. Peak identification is as follows 1, HCB 2, lindane 5, aldrin 7, o,p -DDE 10, endrin 11, o,p -DDT 13, p,p -DDT peaks 3, 4, 6, 8, 9, 12, 14, 15 and 16 were not identified. Adapted from Journal of High Resolution Chromatography, 13, R. Barcarolo, Coupled EC-GC a new method for the on-line analysis of organchlorine pesticide residues in fat , pp. 465-469, 1990, with permission from Wiley-VCH.
Figure 15.3 Separation of tricyclic antidepressants by using multidimensional LC-LC. Peak identification is as follows DOX, doxepin DES, desipramine NOR, noitryptylene IMI, imipramine AMI, amiti yptyline. Adapted from Journal of Chromatography, 507, J. V. Posluszny et al., Optimization of multidimensional high-performance liquid cliromatography for the deterTnination of drugs in plasma by direct injection, micellar cleanup and photodiode array detection , pp. 267 - 276, copyright 1990, with permission from Elsevier Science. Figure 15.3 Separation of tricyclic antidepressants by using multidimensional LC-LC. Peak identification is as follows DOX, doxepin DES, desipramine NOR, noitryptylene IMI, imipramine AMI, amiti yptyline. Adapted from Journal of Chromatography, 507, J. V. Posluszny et al., Optimization of multidimensional high-performance liquid cliromatography for the deterTnination of drugs in plasma by direct injection, micellar cleanup and photodiode array detection , pp. 267 - 276, copyright 1990, with permission from Elsevier Science.
Figure 15.7 Cliromatographic separation of cliiral hydroxy acids from Pseudomonas aeruginosa without (a) and with (h) co-injection of racemic standards. Peak identification is as follows 1, 3-hydroxy decanoic acid, methyl ester 2, 3-hydroxy dodecanoic acid, methyl ester 3, 2-hydroxy dodecanoic acid, methyl ester. Adapted from Journal of High Resolution Chromatography, 18, A. Kaunzinger et al., Stereo differentiation and simultaneous analysis of 2- and 3-hydroxyalkanoic acids from hiomemhranes hy multidimensional gas cliromatog-raphy , pp. 191 -193, 1995, with permission from Wiley-VCH. (continuedp. 419)... Figure 15.7 Cliromatographic separation of cliiral hydroxy acids from Pseudomonas aeruginosa without (a) and with (h) co-injection of racemic standards. Peak identification is as follows 1, 3-hydroxy decanoic acid, methyl ester 2, 3-hydroxy dodecanoic acid, methyl ester 3, 2-hydroxy dodecanoic acid, methyl ester. Adapted from Journal of High Resolution Chromatography, 18, A. Kaunzinger et al., Stereo differentiation and simultaneous analysis of 2- and 3-hydroxyalkanoic acids from hiomemhranes hy multidimensional gas cliromatog-raphy , pp. 191 -193, 1995, with permission from Wiley-VCH. (continuedp. 419)...
Figure 15.9 Use of heart-cutting for the identification of target compounds in 90% evaporated gasoline. Peak identification is as follows 1, 1,2,4,5-teti amethylbenzene 2, 1,2,3,5-teti amethylbenzene 3, 4-methylindane 4, 2-methylnaphthalene 5, 5-methylindane 6, 1-methylnaphthalene 7, dodecane 8, naphthalene 9,1,3-dimethylnaphthalene. Adapted from Chromatography, 39, A. Jayatilaka and C.F. Poole, Identification of petroleum distillates from fire debris using multidimensional gas chromatography , pp. 200-209, 1994, with permission from Vieweg Publishing. Figure 15.9 Use of heart-cutting for the identification of target compounds in 90% evaporated gasoline. Peak identification is as follows 1, 1,2,4,5-teti amethylbenzene 2, 1,2,3,5-teti amethylbenzene 3, 4-methylindane 4, 2-methylnaphthalene 5, 5-methylindane 6, 1-methylnaphthalene 7, dodecane 8, naphthalene 9,1,3-dimethylnaphthalene. Adapted from Chromatography, 39, A. Jayatilaka and C.F. Poole, Identification of petroleum distillates from fire debris using multidimensional gas chromatography , pp. 200-209, 1994, with permission from Vieweg Publishing.
Figure 15.11 (a) Total ion clnomatogram of a Grob test mixture obtained on an Rtx-1701 column, and (b) re-injection of the entire clnomatogram on to an Rtx-5 column. Peak identification is as follows a, 2,3-butanediol b, decane c, undecane d, 1-octanol e, nonanal f, 2,6-dimethylphenol g, 2-ethylhexanoic acid h, 2,6-dimethylaniline i, decanoic acid methyl ester ], dicyclohexylamine k, undecanoic acid, methyl ester 1, dodecanoic acid, methyl ester. Adapted from Journal of High Resolution Chromatography, 21, M. J. Tomlinson and C. L. Wilkins, Evaluation of a semi-automated multidimensional gas chromatography-infrared-mass specti ometry system for initant analysis , pp. 347-354, 1998, with permission from Wiley-VCH. [Pg.424]

Figure 15.12 GC-GC chromatogram of a natural cw-3-hexen-l-ol fraction. Peak identification is as follows 1, ethyl-2-methylbutyrate 2, traw-2-hexenal 3, 1-hexanol 4, cw-3-hexen-l-ol 5, tro 5-2-hexen-l-ol. Adapted from Journal of High Resolution Chromatography, 15, S. Nitz et al.. Multidimensional gas chromatography-isotope ratio mass specti ometry, (MDGC-IRMS). Part A system desaiption and technical requuements , pp. 387-391, 1992, with permission from Wiley-VCH. Figure 15.12 GC-GC chromatogram of a natural cw-3-hexen-l-ol fraction. Peak identification is as follows 1, ethyl-2-methylbutyrate 2, traw-2-hexenal 3, 1-hexanol 4, cw-3-hexen-l-ol 5, tro 5-2-hexen-l-ol. Adapted from Journal of High Resolution Chromatography, 15, S. Nitz et al.. Multidimensional gas chromatography-isotope ratio mass specti ometry, (MDGC-IRMS). Part A system desaiption and technical requuements , pp. 387-391, 1992, with permission from Wiley-VCH.
Figure 15.13 Comprehensive two-dimensional GC chromatogram of a supercritical fluid exti act of spiked human semm. Peak identification is as follows 1, dicamha 2, tiifluralin 3, dicliloran 4, phorate 5, pentachlorophenol 6, atrazine 7, fonofos 8, diazinon 9, cWorothalonil 10, terhufos 11, alachlor 12, matalaxyl 13, malathion 14, metalochlor 15, DCPA 16, captan 17, folpet 18, heptadecanoic acid. Adapted imm Analytical Chemistry, 66, Z. Liu et al., Comprehensive two-dimensional gas chromatography for the fast separation and determination of pesticides exuacted from human senim , pp. 3086-3092, copyright 1994, with pemiission from the American Chemical Society. Figure 15.13 Comprehensive two-dimensional GC chromatogram of a supercritical fluid exti act of spiked human semm. Peak identification is as follows 1, dicamha 2, tiifluralin 3, dicliloran 4, phorate 5, pentachlorophenol 6, atrazine 7, fonofos 8, diazinon 9, cWorothalonil 10, terhufos 11, alachlor 12, matalaxyl 13, malathion 14, metalochlor 15, DCPA 16, captan 17, folpet 18, heptadecanoic acid. Adapted imm Analytical Chemistry, 66, Z. Liu et al., Comprehensive two-dimensional gas chromatography for the fast separation and determination of pesticides exuacted from human senim , pp. 3086-3092, copyright 1994, with pemiission from the American Chemical Society.
Figure 15.14 Separation of explosives exnacted from water by using SPE-SFE-GC at several SEE trapping temperatures, peak identification is as follows NG, nitroglycerin 2,6-DNT, 2,6-dinitrotoluene 2,4-DNT, 2,4-dinitrotoluene TNT, triniti otoluene IS, 1,3-tiichloroben-zene. Adapted Journal of High Resolution Chromatography, 16, G. C. Slack et al., Coupled solid phase extraction supercritical fluid extraction-on-line gas cliromatography of explosives from water , pp. 473-478, 1993, with permission from Wiley-VCH. Figure 15.14 Separation of explosives exnacted from water by using SPE-SFE-GC at several SEE trapping temperatures, peak identification is as follows NG, nitroglycerin 2,6-DNT, 2,6-dinitrotoluene 2,4-DNT, 2,4-dinitrotoluene TNT, triniti otoluene IS, 1,3-tiichloroben-zene. Adapted Journal of High Resolution Chromatography, 16, G. C. Slack et al., Coupled solid phase extraction supercritical fluid extraction-on-line gas cliromatography of explosives from water , pp. 473-478, 1993, with permission from Wiley-VCH.

See other pages where Peaks identification is mentioned: [Pg.1803]    [Pg.7]    [Pg.231]    [Pg.236]    [Pg.239]    [Pg.276]    [Pg.359]    [Pg.388]    [Pg.392]    [Pg.403]    [Pg.410]    [Pg.74]    [Pg.300]    [Pg.310]   
See also in sourсe #XX -- [ Pg.238 ]

See also in sourсe #XX -- [ Pg.22 , Pg.23 , Pg.24 , Pg.25 , Pg.26 , Pg.27 , Pg.28 , Pg.29 , Pg.30 , Pg.31 ]

See also in sourсe #XX -- [ Pg.242 ]

See also in sourсe #XX -- [ Pg.211 ]




SEARCH



Carbon peaks, identification

Chromatographic peak identification

Identification of peaks

Interfaced pyrolysis gas chromatographic peak identification

Peak identification absorbance ratios

Peak identification analysis

Peak identification methods

Peak identification spectral properties

Peak identification spectroscopic data

Peak identification, qualitative analysis

Peaks identification software

Reversed-phase chromatography peak identification

Spectral Peak Identification

© 2024 chempedia.info