Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solubility reaction conditions

Sulfates. Indium metal and its oxides dissolve in warm sulfuric acid to give a solution of the trisulfate [13464-82-9], In2(S0 2- It is a white, crystalline, deUquescent soHd, readily soluble in water that forms double salts with alkaLi sulfates and some organic substituted ammonium bases. Concentration of the acidified trisulfate solution produces indium acid sulfate crystal [57344-73-7], In(HS0 2> other reaction conditions give basic sulfates. [Pg.81]

Reaction Conditions. Alcoholysis commonly takes place in one Hquid phase, sometimes with one of the reactants being only partially soluble and going into solution gradually as the reaction proceeds. Unless an excess of one of the reactants is used, or unless one of the products is withdrawn from the reaction phase by vaporization or precipitation, the reaction does not proceed to completion but comes to a standstill with substantial proportions of both alcohols and both esters in equilibrium. The concentrations present at equilibrium depend on the characteristics of the alcohols and esters involved, but in most practical uses of the reaction, one or both of the devices mentioned are used to force the reaction toward completion. [Pg.383]

Pd-C, R0H,.HC02NH4J hydrazine or sodium hypophosphite, 42-91% yield. 2-Benzylaminopyridine and benzyladenine were stable to these reaction conditions. Lower yields occurred because of the water solubility of the product, thus hampering isolation. [Pg.365]

Reaction of melamine with neutralised formaldehyde at about 80-100°C leads to the production of mixture of water-soluble methylolmelamines. These hydroxymethyl derivatives can possess up to six methylol groups per molecule and include trimethylolmelamine and hexamethylolmelamine (Figure 24.8) The methylol content of the mixture will depend on the melamine formaldehyde ratio and on the reaction conditions. [Pg.682]

The addition proceeds most smoothly with highly functionalized (more polar) steroids as seen in examples by Bernstein and others. The polar reaction conditions pose solubility problems for lipophilic androstane, cholestane and pregnane derivatives. Improved yields can be obtained in some cases by using dimethyl sulfoxide or t-butanol " as solvents and by using sodium A-bromobenzenesulfonamide or l,3-dibromo-5,5-dimethyl hydantoin (available from Arapahoe Chemicals) as a source of positive bromine. The addition of bromo acetate and bromo formate to steroid olefins has been studied to a limited extent. ... [Pg.17]

Ionic liquids with wealdy coordinating, inert anions (such as [(CF3S02)2N] , [BFJ , or [PFg] under anhydrous conditions) and inert cations (cations that do not coordinate to the catalyst themselves, nor form species that coordinate to the catalyst under the reaction conditions used) can be looked on as innocent solvents in transition metal catalysis. In these cases, the role of the ionic liquid is solely to provide a more or less polar, more or less weakly coordinating medium for the transition metal catalyst, but which additionally offers special solubility for feedstock and products. [Pg.221]

Despite the limited solubility of 1-octene in the ionic catalyst phase, a remarkable activity of the platinum catalyst was achieved [turnover frequency (TOP) = 126 h ]. However, the system has to be carefully optimized to avoid significant formation of hydrogenated by-product. Detailed studies to identify the best reaction conditions revealed that, in the chlorostannate ionic liquid [BMIM]Cl/SnCl2 [X(SnCl2) = 0.55],... [Pg.234]

Kaeriyama et al. [10] reported on the Ni(0)-catalyzed coupling of 1,4-dibromo-2-methoxycarbonylbenzene to poly(2-methoxycarbonyl-l,4-phenylene) (4) as a soluble, processable precursor for parent PPP 1. The aromatic polyester-type PPP precursor 4 was then saponified to carboxylated PPP 5 and thermally decarboxy-latcd to 1 with CuO catalysts. However, due to the harsh reaction conditions in the final step, the reaction cannot be carried out satisfactorily in the solid state (film). [Pg.33]

The water-soluble sulfonic acids of copper phthalocyanine are produced by heating phthalocyanines in oleum. By varying the reaction conditions, one to four hydrogen atoms can be substituted. A maximum one sulfo group is introduced per isoindoline unit.335... [Pg.806]

A more elegant, but expensive, approach22 has been the use of soluble iridium and rhodium catalysts which contain coordinated dimethyl sulphoxide (e.g. IrHCl2(Me2SO)3) which promote the oxidation of sulphoxides in aqueous media, equation (8). The ease of oxidation depends on the substituents and this decreases in the order Me > Ph > PhCH2. This reaction is especially useful since sulphides are not oxidized under the reaction conditions due to the formation of strong complexes with the catalyst. [Pg.972]

Mohanty et al. were the first to introduce pendent r-butyl groups in die polymer backbones. The resulting material was quite soluble in aprotic dipolar solvents.83 The PEEK precursors were prepared under a mild reaction condition at 170°C. The polymer precursor can be converted to PEEK in die presence of Lewis acid catalyst A1C13 via a retro Friedel-Crafts alkylation. Approximately 50% of die rerr-butyl substitutes were removed due to die insolubility of the product in die solvent used. Later, Risse et al. showed diat complete cleavage of f< rf-butyl substitutes could be achieved using a strong Lewis acid CF3SO3H as both die catalyst and the reaction medium (Scheme 6.15).84... [Pg.342]

Inert solvents such as dimethyl ether [22], liquid sulfur dioxide or petroleum ether [23] were used to improve the quality of the sulfated alcohol or the reaction conditions. Solvents immiscible in water, such as petroleum ether [24], carbon tetrachloride [25], or butyl alcohol [26], as well as water-soluble sol-... [Pg.227]

By replacing insoluble cross-linked resins with soluble polymer supports, the well-estabhshed reaction conditions of classical organic chemistry can be more readily apphed, while still fadhtating product purification. However, soluble supports suffer from the hmitation of low loading capacity. The recently introduced fluorous synthesis methodology overcomes many of the drawbacks of both the insoluble beads and the soluble polymers, but the high cost of perfluoroalkane solvents, hmitation in solvent selection, and the need for specialized reagents may hmit its apphcations. [Pg.116]

Recent studies in our laboratory have demonstrated that formylation of P-H bonds can be achieved without the aid of transition metal catalysts under mild reaction conditions [47]. For example, amide and thioether functionalized primary phosphines, 5 and 9 respectively, upon treatment with 37% formaldehyde produced the corresponding amide/thioether functionaUzed water soluble phosphines 21 and 22 respectively in near quantitative yield (Scheme 10) [47]. [Pg.132]

While the above examples demonstrate that product control to a significant extent is possible in oxythallation by careful choice of substrate or reaction conditions, the synthetic utility of oxythallation has been illustrated most convincingly by the results obtained with highly ionic thallium(III) salts, especially the nitrate (hereafter abbreviated TTN). Unlike the sulfate, perchlorate, or fluoroborate salts (165), TTN can easily be obtained as the stable, crystalline trihydrate which is soluble in alcohols, carboxylic acids, ethers such as dimethoxyethane (glyme), and dilute mineral acids. Oxidations by TTN can therefore be carried out under a wide variety of experimental conditions. [Pg.187]

Horhold et al. and Lenz et al. [94,95]. The polycondensation provides the cyano-PPVs as insoluble, intractable powders. Holmes et al. [96], and later on Rikken et al. [97], described a new family of soluble, well-characterized 2,5-dialkyl- and 2,5-dialkoxy-substituted poly(pflrfl-phenylene-cyanovinylene)s (74b) synthesized by Knoevenagel condensation-polymerization of the corresponding alkyl-or alkoxy-substituted aromatic monomers. Careful control of the reaction conditions (tetra-n-butyl ammonium hydroxide as base) is required to avoid Michael-type addition. [Pg.199]

The term fluorous biphase has been proposed to cover fully fluorinated hydrocarbon solvents (or other fluorinated inert materials, for example ethers) that are immiscible with organic solvents at ambient conditions. Like ionic liquids the ideal concept is that reactants and catalysts would be soluble in the (relatively high-boiling) fluorous phase under reaction conditions but that products would readily separate into a distinct phase at ambient conditions (Figure 5.5). [Pg.161]

Various bisphenol derivatives were also polymerized by peroxidase under selected reaction conditions, yielding soluble phenolic polymers. Bisphenol-A was polymerized by peroxidase catalyst to give a polymer soluble in acetone, DMF, DMSO, and methanol. The polymer was produced in higher yields using SBP as a catalyst. This polymer showed a molecular weight of 4 x 10 and a 7g at 154°C. The HRP-catalyzed polymerization of 4,4 -biphenol produced a polymer showing high thermal stability. ... [Pg.231]

Peroxidase also induced the polymerization of an industrial product, bisphenol-F, consisting of 2,2 -, 2,4 -, and 4,4 -dihydroxydiphenylmethanes. Under the selected reaction conditions, the quantitative formation of a soluble... [Pg.231]


See other pages where Solubility reaction conditions is mentioned: [Pg.240]    [Pg.445]    [Pg.80]    [Pg.226]    [Pg.679]    [Pg.10]    [Pg.372]    [Pg.197]    [Pg.219]    [Pg.250]    [Pg.271]    [Pg.273]    [Pg.336]    [Pg.845]    [Pg.517]    [Pg.727]    [Pg.176]    [Pg.189]    [Pg.341]    [Pg.347]    [Pg.134]    [Pg.182]    [Pg.92]    [Pg.114]    [Pg.4]    [Pg.143]    [Pg.159]    [Pg.354]    [Pg.230]    [Pg.233]    [Pg.241]   
See also in sourсe #XX -- [ Pg.228 ]




SEARCH



Reaction condition

© 2024 chempedia.info