Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dimethyl coordination

Preference for neutral metallocene dimethyl coordination over anion coordination to form /(-Me di-nuclear cationic complexes (e.g., 43) is observed for those truly weakly coordinating anions such as B(C6F5)4 and MePBB . Stabilization of highly reactive and unstable metallocenium cations by /(-Me coordination allows isolation and characterization of such species in the pure state, yet affords excellent polymerization activity in solution, presumably via dissociation to a more reactive monomeric form, as indicated by NMR studies.For more coordinating anions such as CH3B(C6F5)3, /(-Me bimetallic cationic complexes are not detected, except when an excess of neutral metallocene dimethyl is employed (Scheme 25) 143,315 equilibrium can be utilized to stabilize... [Pg.117]

The gas phase reaction shows a double minimum and a small barrier along the reaction coordinate which is the difference between the two C-CL distances. The minima disappear in aqueous solution and this is accompanied by an increase in the height of the barrier. The behaviour in dimethyl fonnamide is intennediate between these two. [Pg.517]

The desired pyridylamine was obtained in 69 % overall yield by monomethylation of 2-(aminomethyl)pyridine following a literature procedure (Scheme 4.14). First amine 4.48 was converted into formamide 4.49, through reaction with the in situ prepared mixed anhydride of acetic acid and formic acid. Reduction of 4.49 with borane dimethyl sulfide complex produced diamine 4.50. This compound could be used successfully in the Mannich reaction with 4.39, affording crude 4.51 in 92 % yield (Scheme 4.15). Analogous to 4.44, 4.51 also coordinates to copper(II) in water, as indicated by a shift of the UV-absorption maximum from 296 nm to 308 nm. [Pg.116]

Cycloaddition of COj with the dimethyl-substituted methylenecyclopropane 75 proceeds smoothly above 100 °C under pressure, yielding the five-membered ring lactone 76. The regiocheraistry of this reaction is different from that of above-mentioned diphenyl-substituted methylenecyclopropanes 66 and 67[61], This allylic lactone 76 is another source of trimethylenemethane when it is treated with Pd(0) catalyst coordinated by dppe in refluxing toluene to generate 77, and its reaction with aldehydes or ketones affords the 3-methylenetetrahy-drofuran derivative 78 as expected for this intermediate. Also, the lactone 76 reacts with a, /3-unsaturated carbonyl compounds. The reaction of coumarin (79) with 76 to give the chroman-2-one derivative 80 is an example[62]. [Pg.522]

Esters. Esters of inorganic acids are named as the salts for example, ( 113)2804, dimethyl sulfate. However, if it is desired to specify the constitution of the compound, the nomenclature for coordination compounds should be used. [Pg.221]

Thermal stability is enhanced in chelates thus dimethyl-2-methy1pentane-2,4-dio1titanium [23916-35-0] (22) is much more stable than (CH2)3Ti(OCH(CH2)2)2 (68)- The stmcture of the former has been shown by x-ray diffraction to be dimeric and five-coordinate through oxygen bridges. The more highly substituted the six-membered ring, the mote thermally stable the compound. [Pg.154]

Cp(CO)2Re(THF) forms the complex 105 upon reaction with thiophene (89JA8753, 910M2436). Similar species are known for 2- and 3-methyl-, 2,5-dimethyl, and tetramethylthiophene (91IC1417). Thiophene in 105 is S-coordi-nated, and the sulfur atom is pyramidal. Treatment of 105 with Fc2(CO)9 produces 106, where the thiophene ligand is bridge-coordinated via the sulfur atom to rhenium and four carbon atoms of the dienic system with iron (the coordination mode). The pyramidal nature of the sulfur atom is preserved. The -coordination of thiophene separates the dienic and sulfur counterparts of the ligand and decreases the TT-electron delocalization, which leads to the enhanced basicity of the sulfur atom. [Pg.17]

IV-Methylpyrrole with (Cp IrH3)2 and 3,3-dimethyl-1-butene gives a couple of unique organometallic products, 86 and 87 (990M134). In 86, the C—H bond in position 2 is activated and a rare tiVC) ti (C=C) coordination mode is realized. Species 87 is a zwitterionic compound containing a triple bond between the iridium atoms. [Pg.132]

Organomagnesium derivatives have not so far been isolated [80JA994 80JOM(193)C13]. Bis[bis(trimethylsilyl)phosphonamide] with diphenylbutadi-yne and calcium or strontium in THE yields the TiyP)-coordinated species 129. Reaction of (THE)4Ba[P(SiMc3)2]2 with diphenylbutadiyne gives an ri -coordinated species 130 (98JA6722). 1-Chloro-and l-cyclopentadienyl-3,4-dimethyl-2,5-bis-(trimethylsilyl)-l-phosphacyclopenta-2,4-dienes both react with calcium to give... [Pg.139]

If the reaction temperature is raised to 430 K and the carbon monoxide pressure to 3 atm, coordination of the metal atom in the rearranged product occurs via the phosphorus site, as in 159 (M = Cr, Mo, W) [84JOM(263)55]. Along with this product (M = W) at 420 K, formation of the dimer of 5-phenyl-3,4-dimethyl-2//-phosphole, 160 (the a complex), is possible as a consequence of [4 - - 2] cycloaddition reactions. Chromium hexacarbonyl in turn forms phospholido-bridged TiyP)-coordinatedcomplex 161. At 420 K in excess 2,3-dimethylbutadiene, a transformation 162 163 takes place (82JA4484). [Pg.144]

Another class of complexes involves rj (N)-coordinated species of the Nl-unsubstituted pyrazoles. Chromium hexacarbcMiyl and pyrazole or 3,5-dimethyl-pyrazole form [(Hpz)Cr(CO)5] ot [(Hpz )Cr(CO)5] irrespective of the ratio of reactants. In similar circumstances, tungsten hexacarbonyl yields both [(Hpz)W(CO)5]... [Pg.162]

Dimethyl-, 3,5-diphenyl-, and 3,5-di-tert-butylpyrazolato potassium salts with [Cp RuCl]4 give the first structurally proven -coordinated complexes 48 (R = Me, t-Bu, Ph) in the azole series (99JA4536). [Pg.169]

Compound [PtCl( Bu2PCMe2CH2)2l reacts with pyrazole or 3,5-dimethyl-pyrazole in the presence of sodium hydroxide to form 242 (R = H, Me) [84ICA (82)L9]. The chelate ring is not planar in this case, and the trans strucmre of the pyrazolate derivative was demonstrated. Tlie four-coordinated platinum atoms are characterized by a distorted square-planar coordination. [Pg.217]

Dimethyl-l,2,2,3-tetramethyl-A -1,2,5-azasilaboroline with [Fe2(CO)9] gives sandwich 62 and sandwich 63 (82AGE207, 82CB738) with Cp)Co(C2H4)2]. With [Ni(CDT)] or in a vapor phase with metallic nickel, sandwich 64 (M =Ni) is formed. The vapor-phase synthesis with iron gives 64 (M = Fe). In all these sandwiches, 62-64, the j " -coordination of the heterocyclic ligand is realized. [Pg.24]

When methylene chloride was used as a solvent, it was found that 28 are obtained in minor amounts, while the dominating product is the -coordinated chloro-carbyne species [(> -Tp )Mo(CO)2(=CCl)], whose yield increases abruptly with substitution in the pyrazol-l-yl fragments (3-methyl-, 3,4,5-trimethyl-, and 3,5-dimethyl-4-chloro derivatives) [90AX(C)59,95JCS(D) 1709]. The tungsten analog can be prepared similarly. The chlorocarbyne molybdenum complex follows also from the reaction of the parent anion with triphenylsulfonium cation but conducted in dichloromethane. The bromo- and iodocarbyne derivatives are made similarly. [Pg.183]

In pyridinium chloride ionic liquids and in l,2-dimethyl-3-hexylimida2olium chloride ([HMMIMjCl), where the C(2) position is protected by a methyl group, only [PdClJ was observed, whereas in [HMIMjCl, the EXAFS showed the formation of a bis-carbene complex. In the presence of triphenylphosphine, Pd-P coordination was observed in all ionic liquids except where the carbene complex was formed. During the Heck reaction, the formation of palladium was found to be quicker than in the absence of reagents. Overall, the EXAFS showed the presence of small palladium clusters of approximately 1 nm diameter formed in solution. [Pg.145]

The reaction is generally carried out at -78 °C in ether solution, and yields are often excellent, l or example, manicone, a substance secreted by male ants to coordinate ant pairing and mating, has been synthesized by reaction of lithium diethylcopper with (E)-2p4-dimethyl-2-hexenoyl chloride. [Pg.805]

Preliminary experiments prove that the substitution pattern of the /V-aryl moiety of imine 1 is crucial for the stereoselectivity of this reaction. The 2-substituent on the aryl group is of special importance. Namely, introduction of a methoxy group leads to a considerable decrease of enantioselectivity compared to the corresponding 2-H derivative, probably due to disfavor-able coordination with the organolithium complex. In contrast, alkyl groups show the reverse effect along with increased bulkiness (e.g., Tabic 1, entries l-3a) but 2,6-dimethyl substitution provides lower ee values. Furthermore, the 4-substituent of the TV-aryl moiety is of minor importance for the stereoselectivity of the reaction [the Ar-phcnyl and the /V-(4-methoxyphenyl) derivatives give similar results], whereas a substituent in the 3-position results in lower stereoselectivities (e.g., Et, Cl, OCHj)41. [Pg.694]

Complexes of bulky substituted phenanthrolines [Pt(N-N)LX2] (L, X both monodentate N-N, e.g. 2,9-dimethyl- 1,10-phenanthroline) can be 5-coordinate tbp when a good 7r-acceptor (e.g. C2H4) is present or 4-coordinate with monodentate phenanthrolines. Hartree-Fock calculations indicate that the 7r-acceptors reduce the electron density at platinum so that the metal can accept charge from another donor. Species of this kind may be involved in alkene hydrogenation [138]. [Pg.236]


See other pages where Dimethyl coordination is mentioned: [Pg.85]    [Pg.88]    [Pg.52]    [Pg.128]    [Pg.273]    [Pg.201]    [Pg.24]    [Pg.10]    [Pg.36]    [Pg.48]    [Pg.145]    [Pg.157]    [Pg.167]    [Pg.160]    [Pg.181]    [Pg.207]    [Pg.225]    [Pg.136]    [Pg.26]    [Pg.29]    [Pg.23]    [Pg.170]    [Pg.172]    [Pg.194]    [Pg.205]    [Pg.213]    [Pg.98]    [Pg.173]    [Pg.211]    [Pg.892]    [Pg.4]   
See also in sourсe #XX -- [ Pg.79 ]




SEARCH



© 2024 chempedia.info