Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water-soluble phosphines

Substituting a phosphine with a polyether chain may also make the phosphine water-soluble. However, diphosphines of the type 15 (Structures 15-17) are only soluble in water when n > 15 [24]. This type of materials can also be used to prepare thermally responsive catalysts [58]. Other examples related to 15 are the class of compounds 16 (cf. Section 3.2.2.3 n = 12, 16, 110) and 17 (n= 18) [12, 25]. The number n gives the average value of the degree of polycondensation . So far, these polyether-based diphosphines have mainly been used in asymmetric hydrogenation of prochiral substrates such as a-acetamidocinnamic acid where ee values vary from 11 to 91% depending on the reaction medium and ligand used (cf. Section 4.6.3). [Pg.127]

Substituting a phosphine with a polyether chain may also make the phosphine water-soluble. However, diphosphines of the type 41 (41-43) are only soluble in water when n > 15 [85]. This type of material can also be used to prepare thermally responsive catalysts [86]. [Pg.75]

Pd can also be recovered as insoluble complexes such as the dimethylglyox-ime complex, or PdCUiPhiP) by treatment with HCl and PI13P. When water-soluble phosphines are used, the catalyst always remains in the aqueous phase and can be separated from a product in the organic phase, and is used repeatedly. [Pg.5]

Polyphenylene polymers can be prepared by this coupling. For example, the preparation of poly(/i-quaterphenylene-2,2 -dicarboxylic acid) (643) was carried out using aqueous NaHCO and a water-soluble phosphine ligand (DPMSPP)[5I I]. Branched polyphenylene was also prepared[5l2). [Pg.219]

These are water-soluble crystalline compounds sold as concentrated aqueous solutions. The methylol groups are highly reactive (118—122) and capable of being cured on the fabric by reaction with ammonia or amino compounds to form durable cross-linked finishes, probably having phosphine oxide stmctures after post-oxidizing. This finishing process, as developed by Albright Wilson, is known as the Proban process. [Pg.479]

A new homogeneous process for hydroformylation of olefins using a water-soluble catalyst has been developed (40). The catalyst is based on a rhodium complex and utilizes a water-soluble phosphine such as tri(M-sulfophenyl)phosphine. The use of an aqueous phase simplifies the separation of the catalyst and products (see Oxo process). [Pg.51]

CP can also be prepared by the reaction of cellulose with phosphoms oxychloride in pyridine (37) or ether in the presence of sodium hydroxide (38). For the most part these methods yield insoluble, cross-linked, CP with a low DS. A newer method based on reaction of cellulose with molten urea—H PO is claimed to give water soluble CP (39). The action of H PO and P2 5 cellulose in an alcohol diluent gives a stable, water-soluble CP with a high DS (>5% P) (40). These esters are dame resistant and have viscosities up to 6000 mPa-s(=cP) in 5 wt % solution. Cellulose dissolved in mixtures of DMF—N2O4 can be treated with PCl to give cellulose phosphite [37264-91-8] (41) containing 11.5% P and only 0.8% Cl. Cellulose phosphinate [67357-37-5] and cellulose phosphonate [37264-91 -8] h.a.ve been prepared (42). [Pg.265]

A water-soluble phosphine derivative of diazepam allows for more convenient parenteral tranquilizer therapy and avoids some complications due to blood pressure lowering caused by the propylene glycol medium otherwise required for administration. Fosazepam (82) is prepared from benzodiazepine by sodium hydride-mediated alkylation with chioromethyldimethyl phosphine... [Pg.195]

This review account will summarize latest research results on the design, development and properties of functionalized primary phosphines. In particular, the focus would be centered around recent results from our laboratory on the chemical architecture of heteroatom functionahzed primary bisphosphines. We wiU also discuss synthetic protocols for the formylation reactions of functionalized primary phosphines to produce structurally diverse water-soluble hydroxymethyl phosphines. Finally, we will discuss the utility of carboxylate functionahzed primary bisphosphines for incorporation on to peptides and their potential apphcations in catalysis and biomedicine. [Pg.123]

These thioether functionalized primary bisphosphines 9 and 10 showed modest oxidative stabilities and have found applications as novel precursors in the development of functionalized water-soluble phosphines via formylation reactions across P-H bonds (see below) [47]. [Pg.127]

Recent studies in our laboratory have demonstrated that formylation of P-H bonds can be achieved without the aid of transition metal catalysts under mild reaction conditions [47]. For example, amide and thioether functionalized primary phosphines, 5 and 9 respectively, upon treatment with 37% formaldehyde produced the corresponding amide/thioether functionaUzed water soluble phosphines 21 and 22 respectively in near quantitative yield (Scheme 10) [47]. [Pg.132]

Indeed, these reactions proceed at 25 °C in ethanol-aqueous media in the absence of transition metal catalysts. The ease with which P-H bonds in primary phosphines can be converted to P-C bonds, as shown in Schemes 9 and 10, demonstrates the importance of primary phosphines in the design and development of novel organophosphorus compounds. In particular, functionalized hydroxymethyl phosphines have become ubiquitous in the development of water-soluble transition metal/organometallic compounds for potential applications in biphasic aqueous-organic catalysis and also in transition metal based pharmaceutical development [53-62]. Extensive investigations on the coordination chemistry of hydroxymethyl phosphines have demonstrated unique stereospe-cific and kinetic propensity of this class of water-soluble phosphines [53-62]. Representative examples outlined in Fig. 4, depict bidentate and multidentate coordination modes and the unique kinetic propensity to stabilize various oxidation states of metal centers, such as Re( V), Rh(III), Pt(II) and Au(I), in aqueous media [53 - 62]. Therefore, the importance of functionalized primary phosphines in the development of multidentate water-soluble phosphines cannot be overemphasized. [Pg.133]

Although rhodium recovery is efficient it is difficult to separate it from heavies that are formed in small amounts. Over time these heavies tend to result in some catalyst deactivation. One solution to this problem has been developed by Ruhrchemie/Rhone-Poulenc. In this process sulfonated triphenyl phosphine is used as the ligand, which imparts water solubility to the catalyst. The reaction is two-phase, a lower aqueous phase containing the catalyst and an upper organic phase. Fortunately the catalyst appears to sit at the interface enabling reaction to proceed efficiently. At the end of... [Pg.111]

The anaerobic oxidation of phosphines to their oxides by hydroxide ion has been shown to involve the liberation of hydrogen, possibly from the intermediate (21). These oxidations were studied with water-soluble phosphines, since solubility was found to be the main factor controlling the rate of oxidation. The preparation, and detailed n.m.r. spectrum, of PP-dimethyl-P P -diphenyldiphosphine disulphide (22) is a relatively rare example of a study of a mixed disulphide. Many examples of routine oxidation of phosphines to their oxides have appeared. These include the preparation of polyhalogenoarylphosphine oxides using dichromate... [Pg.59]

This H-transfer reduction with sodium formate and employing catalysis by a water-soluble rhodium-phosphine catalyst yields dimethyl methylsuccinate [117]. [Pg.509]

The reaction of the gold(I) complex [Au(C6F5)(tht)j with the water soluble phosphine l,3,5-triaza-7-phosphaadamantane (PTA) gives the complex Au(C6F5) PTA] [28]. [Pg.102]

Assefa, Z Forward, J.M., Grant T.A., Staples, R.J., Hanson, B.E., Mohamed, A.A. and Fackler, J.P. Jr (2003) Three-coordinate, luminescent, water-soluble gold(l) phosphine complexes structural characterization and photoluminescence properties in aqueous solution. Inorganica Chimica Acta, 352, 31 5. [Pg.277]

Figure 3.55. Examples of water-.soluble phosphine ligands. Figure 3.55. Examples of water-.soluble phosphine ligands.
New Chemistry, Including Pulp Bleaching Processes, of the Golden-Aged, Water-Soluble Compound, Tris(hydroxymethyl)phosphine... [Pg.6]

Miscellaneous Reactions of Phosphines.- The role of chiral phosphines as ligands in the catalysis of reactions leading to the formation of chiral products has been reviewed.1111 A procedure for the determination of the enantiomeric excess in chiral phosphines has been developed, based on 13C n.m.r. studies of the diastereoisomeric complexes formed by phosphines with the chiral pinenyl nickel bromide complex. 111 Studies of the sulphonation of triphenylphosphine and of chiral arylphosphines have been reported in attempts to prepare water soluble ligands which aid... [Pg.14]

Water-soluble phosphine ligands containing m-guanidinium moieties were synthesized and applied to aqueous Heck coupling reactions.149 High temperature appears beneficial for Heck-type coupling of simple alkenes in water.150... [Pg.74]

Hydroaminomethylation of alkenes occurred to give both n- and /. so aliphatic amines catalyzed by [Rh(cod)Cl]2 and [Ir(cod)Cl]2 with TPPTS in aqueous NH3 with CO/H2 in an autoclave. The ratio of n-and /.soprimary amines ranged from 96 4 to 84 16.178 The catalytic hydroaminomethylation of long-chain alkenes with dimethylamine can be catalyzed by a water-soluble rhodium-phosphine complex, RhCl(CO) (Tppts)2 [TPPTS P(m-C6H4S03Na)3], in an aqueous-organic two-phase system in the presence of the cationic surfactant cetyltrimethy-lammonium bromide (CTAB) (Eq. 3.43). The addition of the cationic surfactant CTAB accelerated the reaction due to the micelle effect.179... [Pg.77]


See other pages where Water-soluble phosphines is mentioned: [Pg.387]    [Pg.4]    [Pg.387]    [Pg.4]    [Pg.2701]    [Pg.4]    [Pg.130]    [Pg.168]    [Pg.191]    [Pg.367]    [Pg.489]    [Pg.469]    [Pg.528]    [Pg.165]    [Pg.276]    [Pg.123]    [Pg.199]    [Pg.141]    [Pg.7]    [Pg.8]    [Pg.8]    [Pg.14]    [Pg.16]    [Pg.250]    [Pg.45]    [Pg.76]    [Pg.101]   
See also in sourсe #XX -- [ Pg.1329 ]

See also in sourсe #XX -- [ Pg.187 ]

See also in sourсe #XX -- [ Pg.9 ]




SEARCH



Cobaltate, complex with water soluble phosphine

Hydroformylation water-soluble rhodium-phosphine complex

Hydrogenation of olefins with miscellaneous water-soluble catalysts without phosphine ligands

Hydroxyl-substituted water-soluble tertiary phosphines

Nickelate, complex with water soluble phosphine

Nonionic Water-soluble Phosphines

Palladium with water-soluble phosphines

Phosphine ligands, water-soluble

Phosphines solubility

Phosphines water

Phosphines, sulfonated water soluble

Solubilities of tertiary phosphines and their complexes in water

Suzuki water-soluble phosphine ligands

Thermoregulated Phase-transfer Catalysis with Nonionic Water-soluble Phosphines

Water-Soluble Phosphines and Rhodium Recovery

Water-Soluble Rhodium-Phosphine Complex Catalytic Systems

Water-soluble catalyst, rhodium-phosphine

Water-soluble catalyst, rhodium-phosphine complex systems

Water-soluble phosphine complex

Water-soluble tris phosphine

© 2024 chempedia.info