Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrochloric acid solubility

On acetylation it gives acetanilide. Nitrated with some decomposition to a mixture of 2-and 4-nitroanilines. It is basic and gives water-soluble salts with mineral acids. Heating aniline sulphate at 190 C gives sulphanilic add. When heated with alkyl chlorides or aliphatic alcohols mono- and di-alkyl derivatives are obtained, e.g. dimethylaniline. Treatment with trichloroethylene gives phenylglycine. With glycerol and sulphuric acid (Skraup s reaction) quinoline is obtained, while quinaldine can be prepared by the reaction between aniline, paraldehyde and hydrochloric acid. [Pg.35]

Colourless crystals m.p. 50 C, b.p. 301 C. Basic and forms sparingly soluble salts with mineral acids. Prepared by the reduction of 1-nitronaphthalene with iron and a trace of hydrochloric acid or by the action of ammonia upon l-naphlhol at a high temperature and pressure. [Pg.270]

By analogy, ammonium salts should behave as acids in liquid ammonia, since they produce the cation NH4 (the solvo-cation ), and soluble inorganic amides (for example KNHj, ionic) should act as bases. This idea is borne out by experiment ammonium salts in liquid ammonia react with certain metals and hydrogen is given off. The neutralisation of an ionic amide solution by a solution of an ammonium salt in liquid ammonia can be carried out and followed by an indicator or by the change in the potential of an electrode, just like the reaction of sodium hydroxide with hydrochloric acid in water. The only notable difference is that the salt formed in liquid ammonia is usually insoluble and therefore precipitates. [Pg.90]

Boron trioxide is not particularly soluble in water but it slowly dissolves to form both dioxo(HB02)(meta) and trioxo(H3B03) (ortho) boric acids. It is a dimorphous oxide and exists as either a glassy or a crystalline solid. Boron trioxide is an acidic oxide and combines with metal oxides and hydroxides to form borates, some of which have characteristic colours—a fact utilised in analysis as the "borax bead test , cf alumina p. 150. Boric acid. H3BO3. properly called trioxoboric acid, may be prepared by adding excess hydrochloric or sulphuric acid to a hot saturated solution of borax, sodium heptaoxotetraborate, Na2B407, when the only moderately soluble boric acid separates as white flaky crystals on cooling. Boric acid is a very weak monobasic acid it is, in fact, a Lewis acid since its acidity is due to an initial acceptance of a lone pair of electrons from water rather than direct proton donation as in the case of Lowry-Bronsted acids, i.e. [Pg.148]

Why is potassium aluminium sulphate not soluble in benzene A compound M has the composition C = 50.0% H=12.5%o A1 = 37.5%. 0.360 g of M reacts with an excess of water to evolve 0.336 1 of gas N and leave a white gelatinous precipitate R. R dissolves in aqueous sodium hydroxide and in hydrochloric acid. 20 cm of N require 40 cm of oxygen for complete combustion, carbon dioxide and water being the only products. Identify compounds N and R, suggest a structural formula for M, and write an equation for the reaction of M with water. (All gas volumes were measured at s.t.p.)... [Pg.159]

Figure 8.4. Titration oj a soluble carbonate with hydrochloric acid... Figure 8.4. Titration oj a soluble carbonate with hydrochloric acid...
Barium sulphite is soluble in dilute hydrochloric acid unlike barium sulphate which is insoluble. Hence this reaction, and the evolution of sulphur dioxide on addition of an acid, distinguishes a sulphite from a sulphate. [Pg.294]

The anhydrous chloride is prepared by standard methods. It is readily soluble in water to give a blue-green solution from which the blue hydrated salt CuClj. 2H2O can be crystallised here, two water molecules replace two of the planar chlorine ligands in the structure given above. Addition of dilute hydrochloric acid to copper(II) hydroxide or carbonate also gives a blue-green solution of the chloride CuClj but addition of concentrated hydrochloric acid (or any source of chloride ion) produces a yellow solution due to formation of chloro-copper(ll) complexes (see below). [Pg.410]

Hydrochloric acid or any soluble chloride gives a white precipitate, soluble in ammonia. [Pg.430]

Hydrolysis of Potassium Ethyl Sulphate. Dissolve about i g. of the crystals in about 4 ml. of cold distilled water, and divide the solution into two portions, a) To one portion, add barium chloride solution. If pure potassium ethyl sulphate were used, no precipitate should now form, as barium ethyl sulphate is soluble in water. Actually however, almost all samples of potassium ethyl sulphate contain traces of potassium hydrogen sulphate formed by slight hydrolysis of the ethyl compound during the evaporation of its solution, and barium chloride almost invariably gives a faint precipitate of barium sulphate. b) To the second portion, add 2-3 drops of concentrated hydrochloric acid, and boil the mixture gently for about one minute. Cool, add distilled water if necessary until the solution has its former volume, and then add barium chloride as before. A markedly heavier precipitate of barium sulphate separates. The hydrolysis of the potassium ethyl sulphate is hastened considerably by the presence of the free acid Caustic alkalis have a similar, but not quite so rapid an effect. [Pg.79]

Arylarsonic acids have usually a very low solubility in cold water. They are however amphoteric, since with, for example, sodium hydroxide they form sodium salts as above and with acids such as hydrochloric acid they form salts of the type [CaHjAsCOHljlCl. Both types of salt are usually soluble in water, and to isolate the free acid the aqueous solution has to be brought to the correct pH for most arsonic acids this can be achieved by niaking the solution only just acid to Congo Red, when the free acid will usually rapidly separate. [Pg.312]

When platinum is dissolved in aqua regia it is first converted to platinic chloride, PtCl, and the latter at once unites with the excess of hydrochloric acid to give the stable soluble dibasic chloroplatinic acid, HjPtCle.f... [Pg.448]

Dilute hydrochloric or sulphuric acid finds application in the extraction of basic substances from mixtures or in the removal of basic impurities. The dilute acid converts the base e.g., ammonia, amines, etc.) into a water-soluble salt e.g., ammonium chloride, amine hydrochloride). Thus traces of aniline may be separated from impure acetanilide by shaking with dilute hydrochloric acid the aniline is converted into the soluble salt (aniline hydrochloride) whilst the acetanilide remains unaffected. [Pg.151]

The alkylidene dimethone (dimedone) (I) upon boiling with glacial acetic acid, acetic anhydride, hydrochloric acid and other reagents frequently loses water and passes into a substituted octahydroxanthene or the anhydride (II), which often serves as another derivative. The derivatives (I) are soluble in dilute alkali and the resulting solutions give colourations with ferric chloride solution on the other hand, the anhydrides (II) are insoluble in dilute alkali and hence can easily be distinguished from the alkylidene dimedones (I). [Pg.333]

When the derivative is appreciably soluble in ether, the following alternative procedure may be employed. Dissolve the cold leaction mixture in about 60 ml. of ether, wash it with 20-30 ml. of 10 per cent, hydrochloric acid (to remove the excess of base), followed by 20 ml. of 10 per cent, sodium hydroxide solution, separate the ether layer, and evaporate the solvent [CAUTION/]. Recrystallise the residue from dilute alcohol. [Pg.362]

If the amine is soluble in water, mix it with a slight excess (about 25 per cent.) of a saturated solution of picric acid in water (the solubility in cold water is about 1 per cent.). If the amine is insoluble in water, dissolve it by the addition of 2-3 drops of dilute hydrochloric acid (1 1) for each 2-3 ml. of water, then add a sUght excess of the reagent. If a heavy precipitate does not form immediately after the addition of the picric acid solution, allow the mixture to stand for some time and then shake vigorously. Filter off the precipitated picrate and recrystaUise it from boiling water, alcohol or dilute alcohol, boiUng 10 per cent, acetic acid, chloroform or, best, benzene. [Pg.422]

It is advisable to test a small portion of the filtrate for platinum by acidifying with hydrochloric acid and adding a few drops of stannous chloride solution a yellow or brown colour develops according to the quantity of platinum pVesent. The yellow colour is soluble in ether, thus rendering the t t more sensitive. If platinum is found, treat the filtrate with excess of formaldehyde and sodium iQrdroxide solution and heat,- platinum black septarates on standing and may be filtered and worked up with other platinum residues (see Method 3). [Pg.471]

Dissolve 36 g. of p-toluidine in 85 ml. of concentrated hydrochloric acid and 85 ml. of water contained in a 750 ml. conical flask or beaker. Cool the mixture to 0° in an ice-salt bath with vigorous stirring or shaking and the addition of a httle crushed ice. The salt, p-toluidine hydrochloride, will separate as a finely-divided crystalline precipitate. Add during 10-15 minutes a solution of 24 g. of sodium nitrite in 50 ml. of water (1) shake or stir the solution well during the diazotisation, and keep the mixture at a temperature of 0-5° by the addition of a httle crushed ice from time to time. The hydrochloride wUl dissolve as the very soluble diazonium salt is formed when ah the nitrite solution has been introduced, the solution should contain a trace of free nitrous acid. Test with potassium iodide - starch paper (see Section IV,60). [Pg.600]

Method 2. Place a 3 0 g. sample of the mixture of amines in a flask, add 6g. (4-5 ml.) of benzenesulphonyl chloride (or 6 g. of p-toluenesulphonyl chloride) and 100 ml. of a 5 per cent, solution of sodium hydroxide. Stopper the flask and shake vigorously until the odour of the acid chloride has disappeared open the flask occasionally to release the pressure developed by the heat of the reaction. AUow the mixture to cool, and dissolve any insoluble material in 60-75 ml. of ether. If a solid insoluble in both the aqueous and ether layer appears at this point (it is probably the sparingly soluble salt of a primary amine, e.g., a long chain compound of the type CjH5(CH2) NHj), add 25 ml. of water and shake if it does not dissolve, filter it off. Separate the ether and aqueous layers. The ether layer will contain the unchanged tertiary amine and the sulphonamide of the secondary amine. Acidify the alkaline aqueous layer with dilute hydrochloric acid, filter off the sulphonamide of the primary amine, and recrystaUise it from dilute alcohol. Extract the ether layer with sufficient 5 per cent, hydrochloric acid to remove all the tertiary amine present. Evaporate the ether to obtain the sulphonamide of the secondary amine recrystaUise it from alcohol or dilute alcohol. FinaUy, render the hydrochloric acid extract alkaline by the addition of dilute sodium hydroxide solution, and isolate the tertiary amine. [Pg.651]

If the benzoyl derivative is soluble in alkali, precipitate it together with the benzoic acid derived from the reagent by the addition of hydrochloric acid filter and extract the product with cold ether or light petroleum (b.p. 40-60°) to remove the benzoic acid. [Pg.652]

This may be determined roughly by treating a small test portion with 3-4 ml. of hot water and acidifying with concentrated hydrochloric acid the absence of a precipitate in the warm solution indicates the essential completeness of the reaction. Salicylic acid is sparingly soluble and p-hydroxybenzoic acid is relatively soluble under these conditions. [Pg.776]

Study of the solubility behaviour of the compound. A semi-quantitative study of the solubility of the substance in a hmited number of solvents (water, ether, dilute sodium hydroxide solution, dilute hydrochloric acid, sodium bicarbonate solution, concentrated sulphuric and phosphoric acid) will, if intelligently apphed, provide valuable information as to the presence or absence of certain classes of organic compounds. [Pg.1027]

Group IV. Compounds insoluble in water, but soluble in dilute hydrochloric acid. [Pg.1050]

Group II. The classes 1 to 5 are usually soluble in dilute alkali and acid. Useful information may, however, be obtained by examining the behaviour of Sails to alkaline or acidic solvents. With a salt of a water-soluble base, the characteristic odour of an amine is usually apparent when it is treated with dilute alkali likewise, the salt of a water soluble, weak acid is decomposed by dilute hydrochloric acid or by concentrated sulphuric acid. The water-soluble salt of a water-insoluble acid or base will give a precipitate of either the free acid or the free base when treated with dilute acid or dilute alkali. The salts of sulphonic acids and of quaternary bases (R4NOH) are unaflFected by dilute sodium hydroxide or hydrochloric acid. [Pg.1053]

Group IV. The student should remember that the hydrochlorides of some bases are sparingly soluble in cold water and should therefore not be misled by an apparent insolubility of a compound (containing N) in dilute hydrochloric acid. The suspension in dilute hydrochloric acid should always be filtered and the filtrate made alkaline. A precipitate will indicate that the compound should be placed in Group IV if no precipitate is formed, the compound is relegated to Group VII. [Pg.1053]

Solubility in 5 per cent, sodium hydroxide solution. Note whether there is any rise in temperature. If the compound appears insoluble, remove some of the supernatant liquid by means of a dropper to a semimicro test-tube (75 X 10 mm.), add 5 per cent, hydrochloric acid dropwise until acid, and note whether any precipitate (or turbidity) is formed. The production of the latter will place the compound in Group III. [Pg.1055]

Method 2. Dissolve 0-25 g. of 2 4-dinitrophenylhydrazine in a mixture of 42 ml. of concentrated hydrochloric acid and 50 ml. of water by warming on a water bath dilute the cold solution to 250 ml. with distilled water. This reagent is more suitable for water-soluble aldehydes and ketones since alcohol is absent. [Pg.1061]


See other pages where Hydrochloric acid solubility is mentioned: [Pg.14]    [Pg.14]    [Pg.133]    [Pg.207]    [Pg.306]    [Pg.183]    [Pg.275]    [Pg.376]    [Pg.122]    [Pg.194]    [Pg.212]    [Pg.216]    [Pg.240]    [Pg.363]    [Pg.510]    [Pg.554]    [Pg.568]    [Pg.587]    [Pg.591]    [Pg.620]    [Pg.847]    [Pg.1048]    [Pg.1050]    [Pg.1072]   
See also in sourсe #XX -- [ Pg.302 ]




SEARCH



Acids hydrochloric acid

Hydrochloric

Hydrochloric acid

© 2024 chempedia.info