Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldehydes water-soluble

In contrast, the alcohols of low molecular weight give poor, yields and a mixture of products. This can be explained by the intermediate aldehydes water solubility, which favors enolization and hydration in the acidic medium, leading to catalyst consumption and a distribution of products. [Pg.390]

Girard s reagents Quaternary ammonium salts of the type Me3NCH2CONHNH2 X which form water-soluble compounds with aldehydes and ketones, and are therefore separable from other neutral compounds the aldehyde or ketone may be subsequently regenerated after separation. [Pg.190]

It is convenient to consider the indiflferent or neutral oxygen derivatives of the hydrocarbons—(a) aldehydes and kelones, (b) esters and anhydrides, (c) alcohols and ethers—together. All of these, with the exception of the water-soluble members of low molecular weight, are soluble only in concentrated sulphuric acid, i.e., fall into Solubility Group V. The above classes of compounds must be tested for in the order in which they are listed, otherwise erroneous conclusions may be drawn from the reactions for functional groups about to be described. [Pg.1060]

Method 2. Dissolve 0-25 g. of 2 4-dinitrophenylhydrazine in a mixture of 42 ml. of concentrated hydrochloric acid and 50 ml. of water by warming on a water bath dilute the cold solution to 250 ml. with distilled water. This reagent is more suitable for water-soluble aldehydes and ketones since alcohol is absent. [Pg.1061]

Because of its volatility, the cobalt catalyst codistills with the product aldehyde necessitating a separate catalyst separation step known as decobalting. This is typically done by contacting the product stream with an aqueous carboxyhc acid, eg, acetic acid, subsequently separating the aqueous cobalt carboxylate, and returning the cobalt to the process as active catalyst precursor (2). Alternatively, the aldehyde product stream may be decobalted by contacting it with aqueous caustic soda which converts the catalyst into the water-soluble Co(CO). This stream is decanted from the product, acidified, and recycled as active HCo(CO)4. [Pg.466]

Biomters are most economic when apphed to low-concentration gas streams (<1000 ppm) that are also oxygen rich. Greater than 90 percent destruction efficiencies can be obtained for water-soluble organics such as alcohols, aldehydes, and amines. Water-soluble inor-... [Pg.2191]

GIRARD SANDULESCU Reagent Reagents T and "P" (or separation ol aldehydes or Ketones by brming a water soluble hydraaide derivative. [Pg.146]

Separation ol aldehydes. o-NKrobenzaldehyde (302 mg) arxl reagent T (502 mg) was stirred in EtOH (5 mL) under reflux. After cooling the water soluble hyorazone 2 (406 mg), mp 229-230°C was obtained. Acid hydrolysis gave back the aldehyde. [Pg.146]

Common impurities found in aldehydes are the corresponding alcohols, aldols and water from selfcondensation, and the corresponding acids formed by autoxidation. Acids can be removed by shaking with aqueous 10% sodium bicarbonate solution. The organic liquid is then washed with water. It is dried with anhydrous sodium sulfate or magnesium sulfate and then fractionally distilled. Water soluble aldehydes must be dissolved in a suitable solvent such as diethyl ether before being washed in this way. Further purification can be effected via the bisulfite derivative (see pp. 57 and 59) or the Schiff base formed with aniline or benzidine. Solid aldehydes can be dissolved in diethyl ether and purified as above. Alternatively, they can be steam distilled, then sublimed and crystallised from toluene or petroleum ether. [Pg.63]

An expedient and stereoselective synthesis of bicyclic ketone 30 exemplifies the utility and elegance of Corey s new catalytic system (see Scheme 8). Reaction of the (R)-tryptophan-derived oxazaboro-lidine 42 (5 mol %), 5-(benzyloxymethyl)-l,3-cyclopentadiene 26, and 2-bromoacrolein (43) at -78 °C in methylene chloride gives, after eight hours, diastereomeric adducts 44 in a yield of 83 % (95 5 exo.endo diastereoselectivity 96 4 enantioselectivity for the exo isomer). After reaction, the /V-tosyltryptophan can be recovered for reuse. The basic premise is that oxazaborolidine 42 induces the Diels-Alder reaction between intermediates 26 and 43 to proceed through a transition state geometry that maximizes attractive donor-acceptor interactions. Coordination of the dienophile at the face of boron that is cis to the 3-indolylmethyl substituent is thus favored.19d f Treatment of the 95 5 mixture of exo/endo diastereo-mers with 5 mol % aqueous AgNC>3 selectively converts the minor, but more reactive, endo aldehyde diastereomer into water-soluble... [Pg.80]

The charged group introduced into products by the aldol donors (phosphate, carboxylate) facilitates product isolation and purification by salt precipitation and ion exchange techniques. Although many aldehydic substrates of interest for organic synthesis have low water solubility, at present only limited data is available on the stability of aldolases in organic cosolvents, thus in individual cases the optimal conditions must be chosen carefully. [Pg.586]

The Strecker reaction has been performed on the aldehyde 182 prepared from L-cysteine [86] (Scheme 28). The imine was formed in situ by treatment with benzylamine, then TMS cyanide was added to afford prevalently in almost quantitative yield the syn-diamine 183, which is the precursor of (-l-)-biotin 184. The syn selectivity was largely affected by the solvent, toluene being the solvent of choice. Since the aldehyde 182 is chemically and configurationally unstable, a preferred protocol for the synthesis of 183 involved the prehminary formation of the water-soluble bisulfite adduct 185 and the subsequent treatment with sodium cyanide. Although in this case the syn selectivity was lower, both diastereomers could be transformed to (-l-)-biotin. [Pg.33]

Ten Brink et al. (2000) have shown how biphasic systems, sometimes with the sparingly soluble alcohols as one phase and an aqueous phase as the other phase, benefit from the strategy for air oxidation to aldehydes/ketones by using water soluble Pd complex of bathophenanthroline disulphonate. This is a nice example of green technology. [Pg.141]

Monflier et al. (1997) have suggested Pd catalysed hydrocarboxylation of higher alpha olefins in which chemically modified P-cyclodextrin (especially dimethyl P-cyclodextrin) is u.sed in water in preference to a co-solvent like methanol, acetone, acetic acid, acetonitrile, etc. Here, quantitative recycling of the aqueous phase is possible due to easy phase separation without emulsions. A similar strategy has been adopted by Monflier et al. (1998) for biphasic hydrogenations for water-in.soluble aldehydes like undecenal using a water-soluble Ru/triphenylphosphine trisulphonate complex with a. suitably modified p-cyclodextrin. [Pg.143]

In some ca.ses the use of a two-phase system may allow a change in the selectivity. Thus, Joo et al. (1998) have shown that water-soluble Ru hydrides (sulphanatophenylphosphine Ru complexes) give different products in the hydrogenation of cinnamaldehyde with variation in the pH of the aqueous media. At a pH greater than 7.2, cinnamyl alcohol is formed and at a pH less than 5 saturated aldehyde is formed. [Pg.143]

Sulfoalkylated naphthol compounds are effective as dispersants in aqueous cement slurries. The compounds can also be applied in an admixture with water-soluble inorganic compounds of chromium to provide additives of increased overall effectiveness. Particularly suitable are sodium chromate or ammonium dichromate. a-Naphthol is reacted in an alkaline aqueous medium with formaldehyde to create condensation products. The aldehyde can be reacted with bisulfite to produce sulfoalkylated products [1404,1410]. [Pg.310]

We looked at a number of water soluble cosolvents (Table 28.3). In all cases aldehyde products were observed. 1,4-dioxane compares well with ethanol as a co-solvent. The data so far shows that 1,4-dioxane shows slightly lower olefin conversion after two hours than ethanol, but shghtly better selectivity. [Pg.248]

Synthesis of complex 1. The pentadentate salen catalyst 1 was synthesized as described (9). In short, the tosylated 2-[2-(2-methoxyethoxy)-ethoxy]-ethanol 2 (10) was reacted with 2,4-dihydroxybenzaldehyde 3 to yield 4-alkoxy salicylaldehyde 4 after chromatographic purification (eq. 1). Subsequent condensation of 4 with 1,3-diaminopropanol yielded water-soluble salen ligand 5 in sufficient purity and 89% yield (11). The formation of an azomethine bond is indicated by a shift of the NMR signal for the carbonyl carbon from 194.4 ppm in aldehyde 4 to 166.4 ppm for the imino carbon in 5. The pentadentate ligand 5 was then treated with copper(ll) acetate in methanol to obtain the dinuclear copper(ll) complex 1 as a green solid (eq. 2) (11). [Pg.474]

Recently, great advancement has been made in the use of air and oxygen as the oxidant for the oxidation of alcohols in aqueous media. Both transition-metal catalysts and organocatalysts have been developed. Complexes of various transition-metals such as cobalt,31 copper [Cu(I) and Cu(II)],32 Fe(III),33 Co/Mn/Br-system,34 Ru(III and IV),35 and V0P04 2H20,36 have been used to catalyze aerobic oxidations of alcohols. Cu(I) complex-based catalytic aerobic oxidations provide a model of copper(I)-containing oxidase in nature.37 Palladium complexes such as water-soluble Pd-bathophenanthroline are selective catalysts for aerobic oxidation of a wide range of alcohols to aldehydes, ketones, and carboxylic acids in a biphasic... [Pg.150]

By using the more water-soluble ligand, TPPTS, Grosselin et al. converted several unsaturated aldehydes into the corresponding unsaturated... [Pg.216]


See other pages where Aldehydes water-soluble is mentioned: [Pg.77]    [Pg.77]    [Pg.1091]    [Pg.501]    [Pg.16]    [Pg.289]    [Pg.55]    [Pg.177]    [Pg.603]    [Pg.65]    [Pg.69]    [Pg.102]    [Pg.523]    [Pg.371]    [Pg.1091]    [Pg.8]    [Pg.9]    [Pg.167]    [Pg.400]    [Pg.899]    [Pg.45]    [Pg.65]    [Pg.76]    [Pg.128]    [Pg.149]    [Pg.216]    [Pg.217]    [Pg.272]    [Pg.346]    [Pg.632]   
See also in sourсe #XX -- [ Pg.541 ]




SEARCH



Aldehydes solubility

Solubility of Aldehydes and Ketones in Water

© 2024 chempedia.info