Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solids, surface kinetics

Langmuir adsorption isotherm A theoretical equation, derived from the kinetic theory of gases, which relates the amount of gas adsorbed at a plane solid surface to the pressure of gas in equilibrium with the surface. In the derivation it is assumed that the adsorption is restricted to a monolayer at the surface, which is considered to be energetically uniform. It is also assumed that there is no interaction between the adsorbed species. The equation shows that at a gas pressure, p, the fraction, 0, of the surface covered by the adsorbate is given by ... [Pg.234]

Photoelectron spectroscopy provides a direct measure of the filled density of states of a solid. The kinetic energy distribution of the electrons that are emitted via the photoelectric effect when a sample is exposed to a monocluomatic ultraviolet (UV) or x-ray beam yields a photoelectron spectrum. Photoelectron spectroscopy not only provides the atomic composition, but also infonnation conceming the chemical enviromnent of the atoms in the near-surface region. Thus, it is probably the most popular and usefiil surface analysis teclmique. There are a number of fonus of photoelectron spectroscopy in conuuon use. [Pg.307]

The basis for the familiar non-slip boundary condition is a kinetic theory argument originally presented by Maxwell [23]. For a pure gas Maxwell showed that the tangential velocity v and its derivative nornial to a plane solid surface should be related by... [Pg.27]

This assumes that the gas-solid exchange kinetics at the interface is rapid. When this process affects the exchange kinetics significantly dieii analysis of concentrations layer by layer in die diffused sample is necessaty. This can be done by the use of SIMS (secondary ion mass spectrometry) and the equation used by Kihier, Steele and co-workers for this diffusion study employs a surface exchange component. [Pg.231]

Surface SHG [4.307] produces frequency-doubled radiation from a single pulsed laser beam. Intensity, polarization dependence, and rotational anisotropy of the SHG provide information about the surface concentration and orientation of adsorbed molecules and on the symmetry of surface structures. SHG has been successfully used for analysis of adsorption kinetics and ordering effects at surfaces and interfaces, reconstruction of solid surfaces and other surface phase transitions, and potential-induced phenomena at electrode surfaces. For example, orientation measurements were used to probe the intermolecular structure at air-methanol, air-water, and alkane-water interfaces and within mono- and multilayer molecular films. Time-resolved investigations have revealed the orientational dynamics at liquid-liquid, liquid-solid, liquid-air, and air-solid interfaces [4.307]. [Pg.264]

V. P. Zhdanov, B. Kasemo. Kinetic phase transitions in simple reactions on solid surfaces. Surf Sci Rep 20 111-189, 1994. [Pg.431]

While the static aspects of the adsorption of single chains at walls have been studied for a long time [2], the dynamic properties of adsorbed polymers have received much less attention [30-32]. Most work considers the kinetics of either adsorption or desorption of polymers at a solid surface [31], or the... [Pg.569]

However, for the lubricants with lower viscosity, e.g.. Polyglycol oil 1 and 2 with the kinetic viscosity of 47 mm /s to 145 mm /s in Table 1, the transition from EHL to TFL can be seen at the speed of 8 mm/sand23 mm/s, i.e., the relationship between film thickness and speed becomes much weaker than that in EHL. The transition regime can be explained when the film reduces to several times the thickness of the molecular size, the effect of solid surface forces on the action of molecules becomes so strong that the lubricant molecules become more ordered or solid like. The thickness of such a film is related to the lubricant viscosity or molecular size. [Pg.40]

Due to particles extrusion, crystal lattice deformation expands to the adjacent area, though the deformation strength reduces gradually (Figs. 10(a)-10(other hand, after impacting, the particle may retain to plow the surface for a short distance to exhaust the kinetic energy of the particle. As a result, parts of the free atoms break apart from the substrate and pile up as atom clusters before the particle. The observation is consistent with results of molecular dynamics simulation of the nanometric cutting of silicon [15] and collision of the nanoparticle with the solid surface [16]. [Pg.239]

Much of the pioneering work which led to the discovery of efficient catalysts for modern Industrial catalytic processes was performed at a time when advanced analytical Instrumentation was not available. Insights Into catalytic phenomena were achieved through gas adsorption, molecular reaction probes, and macroscopic kinetic measurements. Although Sabatier postulated the existence of unstable reaction Intermediates at the turn of this century. It was not until the 1950 s that such species were actually observed on solid surfaces by Elschens and co-workers (2.) using Infrared spectroscopy. Today, scientists have the luxury of using a multitude of sophisticated surface analytical techniques to study catalytic phenomena on a molecular level. Nevertheless, kinetic measurements using chemically specific probe molecules are still the... [Pg.26]

R. J. Madix, Selected principles in surface reactivity reaction kinetics on extended surfaces and the effects of reaction modifiers on surface reactivity, in The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, Vol. 4, ed. D. A. King and D. P. Woodruff, Elsevier, Amsterdam, 1982, 1. [Pg.75]

The heat transfer across the vapor layer and the temperature distribution in the solid, liquid, and vapor phases are shown in Fig. 13. In the subcooled impact, especially for a droplet of water, which has a larger latent heat, it has been reported that the thickness of the vapor layer can be very small and in some cases, the transient direct contact of the liquid and the solid surface may occur (Chen and Hsu, 1995). When the length scale of the vapor gap is comparable with the free path of the gas molecules, the kinetic slip treatment of the boundary condition needs to be undertaken to modify the continuum system. Consider the Knudsen number defined as the ratio of the average mean free path of the vapor to the thickness of the vapor layer ... [Pg.40]

The vapor-layer model developed in Section IV.A.2 is based on the continuum assumption of the vapor flow. This assumption, however, needs to be modified by considering the kinetic slip at the boundary when the Knudsen number of the vapor is larger than 0.01 (Bird, 1976). With the assumption that the thickness of the vapor layer is much smaller than the radius of the droplet, the reduced continuity and momentum equations for incompressible vapor flows in the symmetrical coordinates ( ,2) are given as Eqs. (43) and (47). When the Knudsen number of the vapor flow is between 0.01 and 0.1, the flow is in the slip regime. In this regime, the flow can still be considered as a continuum at several mean free paths distance from the boundary, but an effective slip velocity needs to be used to describe the molecular interaction between the gas molecules and the boundary. Based on the simple kinetic analysis of vapor molecules near the interface (Harvie and Fletcher, 2001c), the boundary conditions of the vapor flow at the solid surface can be given by... [Pg.42]

The uptake of a cation into a carbonate is thought to proceed via adsorption, eventually leading to surface precipitation and formation of a solid solution. Kinetics of cation adsorption occurs usually in subsequent steps the specific adsorption, i.e., the transfer at a carbonate surface from the solution phase into the adsorbed state must be assumed for most cations to be very fast. Most likely its rate is related to the rate of water exchange (cf. Chapter 4.4). Two examples of the rates of uptake or carbonate surfaces are given in Fig. 8.7. [Pg.298]

Interface and colloid science has a very wide scope and depends on many branches of the physical sciences, including thermodynamics, kinetics, electrolyte and electrochemistry, and solid state chemistry. Throughout, this book explores one fundamental mechanism, the interaction of solutes with solid surfaces (adsorption and desorption). This interaction is characterized in terms of the chemical and physical properties of water, the solute, and the sorbent. Two basic processes in the reaction of solutes with natural surfaces are 1) the formation of coordinative bonds (surface complexation), and 2) hydrophobic adsorption, driven by the incompatibility of the nonpolar compounds with water (and not by the attraction of the compounds to the particulate surface). Both processes need to be understood to explain many processes in natural systems and to derive rate laws for geochemical processes. [Pg.436]

Phase-separation immunoassays have been reported, in which the solid phase particles are formed after the immunoreaction is completed.(42) Phase-separation immunoassays are advantageous since the unstirred layer of solution near a solid surface alters diffusion and binding kinetics at the surface in comparison with the properties of the bulk solution. In phase-separation assays for IgG and IgM, capture antibodies are bound with monomers suitable for styrene or acrylamide polymerization.(42) Monomer-labeled capture antibodies are reacted with analyte and with fluorescein- and/or phycoerythrin-labeled antibodies in a sandwich assay, followed by polymerization of the monomers. Fluorescence of the resulting particles is quantitated in a FACS IV flow microfluorometer, and is directly proportional to analyte concentration. [Pg.461]

The processes controlling transfer and/or removal of pollutants at the aqueous-solid phase interface occur as a result of interactions between chemically reactive groups present in the principal pollutant constituents and other chemical, physical and biological interaction sites on solid surfaces [1]. Studies of these processes have been investigated by various groups (e.g., [6-14]). Several workers indicate that the interactions between the organic pollutants/ SWM leachates at the aqueous-solid phase surfaces involve chemical, electrochemical, and physico-chemical forces, and that these can be studied in detail using both chemical reaction kinetics and electrochemical models [15-28]. [Pg.171]

The Elovich model was originally developed to describe the kinetics of heterogeneous chemisorption of gases on solid surfaces [117]. It describes a number of reaction mechanisms including bulk and surface diffusion, as well as activation and deactivation of catalytic surfaces. In solid phase chemistry, the Elovich model has been used to describe the kinetics of sorption/desorption of various chemicals on solid phases [23]. It can be expressed as [118] ... [Pg.191]


See other pages where Solids, surface kinetics is mentioned: [Pg.257]    [Pg.277]    [Pg.23]    [Pg.39]    [Pg.71]    [Pg.138]    [Pg.428]    [Pg.389]    [Pg.415]    [Pg.947]    [Pg.227]    [Pg.217]    [Pg.219]    [Pg.5]    [Pg.21]    [Pg.21]    [Pg.93]    [Pg.652]    [Pg.189]    [Pg.158]    [Pg.391]    [Pg.29]    [Pg.321]    [Pg.149]    [Pg.256]    [Pg.56]    [Pg.166]    [Pg.384]    [Pg.74]    [Pg.114]    [Pg.147]   
See also in sourсe #XX -- [ Pg.113 ]




SEARCH



Kinetics surfaces

Solid kinetics

© 2024 chempedia.info