Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solid surfaces molecular solids

Molecular orientation at the surface may also be important. A molecule orients planarly when deposited on a solid surface. Molecular strands prefer to be parallel to the surface their probability of being oriented normal to the surface is very low. Several mechanisms can cause this orientation (1) Surface-active sites may favor entire chain segments to interact with the surface. (2) The... [Pg.227]

Another exciting possibility for high sensitivity molecular surface mass spectrometry is the use of laser-excited ion desorption in a pulsed ion cyclotron resonance experiment using Fourier transform techniques. In an ideal situation, this scheme could include all those attributes which are desirable for solid-surface molecular characterization ... [Pg.109]

Molecular beams are limited to reactions that are carried out in vacuum, where well-defined beams of reactant molecules can be prepared. This limits their application to gas-phase reactions and to reactions of gaseous molecules with solid surfaces. Molecular beam methods cannot be used to study kinetics in liquid solvents. The detailed information they provide for gas-gas and gas-surface reactions allows precise testing of models and theories for the dynamics of these classes of reactions. [Pg.775]

The interface between a solid and its vapor (or an inert gas) is discussed in this chapter from an essentially phenomenological point of view. We are interested in surface energies and free energies and in how they may be measured or estimated theoretically. The study of solid surfaces at the molecular level, through the methods of spectroscopy and diffraction, is taken up in Chapter VIII. [Pg.257]

One molecular solid to which a great deal of attention has been given is ice. A review by Fletcher [74] cites calculated surface tension values of 100-120 ergs/cm (see Ref. 75) as compared to an experimental measurement of 109 ergs/cm [76]. There is much evidence that a liquidlike layer develops at the ice-vapor interface, beginning around -35°C and thickening with increasing temperature [45, 74, 77, 78]. [Pg.269]

Finally, it has been possible to obtain LEED patterns from films of molecular solids deposited on a metal-backing. Examples include ice and naphthalene [80] and various phthalocyanines [81]. (The metal backing helps to prevent surface charging.)... [Pg.305]

Catalysis in a single fluid phase (liquid, gas or supercritical fluid) is called homogeneous catalysis because the phase in which it occurs is relatively unifonn or homogeneous. The catalyst may be molecular or ionic. Catalysis at an interface (usually a solid surface) is called heterogeneous catalysis, an implication of this tenn is that more than one phase is present in the reactor, and the reactants are usually concentrated in a fluid phase in contact with the catalyst, e.g., a gas in contact with a solid. Most catalysts used in the largest teclmological processes are solids. The tenn catalytic site (or active site) describes the groups on the surface to which reactants bond for catalysis to occur the identities of the catalytic sites are often unknown because most solid surfaces are nonunifonn in stmcture and composition and difficult to characterize well, and the active sites often constitute a small minority of the surface sites. [Pg.2697]

Depending on the application, models of molecular surfaces arc used to express molecular orbitals, clcaronic densities, van dor Waals radii, or other forms of display. An important definition of a molecular surface was laid down by Richards [182] with the solvent-accessible envelope. Normally the representation is a cloud of points, reticules (meshes or chicken-wire), or solid envelopes. The transparency of solid surfaces may also be indicated (Figure 2-116). [Pg.125]

Molecular mechanics methods have been used particularly for simulating surface-liquid interactions. Molecular mechanics calculations are called effective potential function calculations in the solid-state literature. Monte Carlo methods are useful for determining what orientation the solvent will take near a surface. Molecular dynamics can be used to model surface reactions and adsorption if the force held is parameterized correctly. [Pg.319]

It should be loted that with low-energy surfaces the sudden fall in the heat of adsorption is absent. This is illustrated in Fig. 2.15, where the contrast between the behaviour of nitrogen on the carbons (high-energy surfaces) and on the molecular solids (low-energy surfaces) is very clear. [Pg.59]

In general there are two factors capable of bringing about the reduction in chemical potential of the adsorbate, which is responsible for capillary condensation the proximity of the solid surface on the one hand (adsorption effect) and the curvature of the liquid meniscus on the other (Kelvin effect). From considerations advanced in Chapter 1 the adsorption effect should be limited to a distance of a few molecular diameters from the surface of the solid. Only at distances in excess of this would the film acquire the completely liquid-like properties which would enable its angle of contact with the bulk liquid to become zero thinner films would differ in structure from the bulk liquid and should therefore display a finite angle of contact with it. [Pg.123]

A vast amount of research has been undertaken on adsorption phenomena and the nature of solid surfaces over the fifteen years since the first edition was published, but for the most part this work has resulted in the refinement of existing theoretical principles and experimental procedures rather than in the formulation of entirely new concepts. In spite of the acknowledged weakness of its theoretical foundations, the Brunauer-Emmett-Teller (BET) method still remains the most widely used procedure for the determination of surface area similarly, methods based on the Kelvin equation are still generally applied for the computation of mesopore size distribution from gas adsorption data. However, the more recent studies, especially those carried out on well defined surfaces, have led to a clearer understanding of the scope and limitations of these methods furthermore, the growing awareness of the importance of molecular sieve carbons and zeolites has generated considerable interest in the properties of microporous solids and the mechanism of micropore filling. [Pg.290]

SALI is a reladvely new surface technique that delivers a quantitative and sensitive measure of the chemical composition of solid surfaces. Its major advantage, compared to its parent technique SIMS, is that quantitative elemental and molecular informadon can be obtained. SPI offers exciting possibilities for the analytical characterization of the surfaces of polymers and biomaterials in which chemical differ-endation could be based solely on the characteristic SALE spectra. [Pg.568]

When a gas comes in contact with a solid surface, under suitable conditions of temperature and pressure, the concentration of the gas (the adsorbate) is always found to be greater near the surface (the adsorbent) than in the bulk of the gas phase. This process is known as adsorption. In all solids, the surface atoms are influenced by unbalanced attractive forces normal to the surface plane adsorption of gas molecules at the interface partially restores the balance of forces. Adsorption is spontaneous and is accompanied by a decrease in the free energy of the system. In the gas phase the adsorbate has three degrees of freedom in the adsorbed phase it has only two. This decrease in entropy means that the adsorption process is always exothermic. Adsorption may be either physical or chemical in nature. In the former, the process is dominated by molecular interaction forces, e.g., van der Waals and dispersion forces. The formation of the physically adsorbed layer is analogous to the condensation of a vapor into a liquid in fret, the heat of adsorption for this process is similar to that of liquefoction. [Pg.736]

Surface SHG [4.307] produces frequency-doubled radiation from a single pulsed laser beam. Intensity, polarization dependence, and rotational anisotropy of the SHG provide information about the surface concentration and orientation of adsorbed molecules and on the symmetry of surface structures. SHG has been successfully used for analysis of adsorption kinetics and ordering effects at surfaces and interfaces, reconstruction of solid surfaces and other surface phase transitions, and potential-induced phenomena at electrode surfaces. For example, orientation measurements were used to probe the intermolecular structure at air-methanol, air-water, and alkane-water interfaces and within mono- and multilayer molecular films. Time-resolved investigations have revealed the orientational dynamics at liquid-liquid, liquid-solid, liquid-air, and air-solid interfaces [4.307]. [Pg.264]

Although we include adsorption here following the chapter on mass transfer, we should be clear that it is a very specific process in its fullest fundamental meaning. Adsorption is the process by which molecules in the fluid phase in contact with a solid move to the solid surface and interact with it. Once at the solid surface these molecules may be reversible or irreversible adsorbed, that is, they may come back off the surface to the fluid phase with their full molecular integrity intact, or they may be so strongly bound that the rate of removal is for all purposes close enough to zero to be considered zero. [Pg.249]

Gels made in this way have virtually no usable porosity and are called Jordi solid bead packings. They can be used in the production of low surface area reverse phase packings for fast protein analysis and in the manufacture of hydrodynamic volume columns as well as solid supports for solid-phase syntheses reactions. An example of a hydrodynamic volume column separation is shown in Fig. 13.2 and its calibration plot is shown in Fig. 13.3. The major advantage of this type of column is its ability to resolve very high molecular weight polymer samples successfully. [Pg.369]

Quinoxaline 1,4-dioxides have also been prepared by condensation reactions carried out on the surface of solid catalysts such as silica gel, " molecular sieves, " or alumina. " As a representative example, " BFO 1 and the P-dicarbonyl compound 16 were combined with silica gel in methanol. The excess methanol was removed by evaporation and the silica gel with adsorbed reagents was allowed to stand for two weeks without drying. The quinoxaline 1,4-dioxide 17 was obtained in 90% yield after elution from a silica gel column. [Pg.506]

H. Ohtani, C.-T. Kao, M.A.V. Hove, and G. Somorjai, A tabulation and classification of the stmctures of clean solid surfaces and of adsorbed atomic and molecular monolayes as determined from low energy electron diffraction patterns, Progress in Surface Science 23(2,3), 155-316 (1986) and reference therein. [Pg.85]


See other pages where Solid surfaces molecular solids is mentioned: [Pg.292]    [Pg.243]    [Pg.572]    [Pg.591]    [Pg.637]    [Pg.638]    [Pg.1264]    [Pg.1278]    [Pg.1777]    [Pg.59]    [Pg.180]    [Pg.163]    [Pg.375]    [Pg.1504]    [Pg.303]    [Pg.374]    [Pg.442]    [Pg.533]    [Pg.48]    [Pg.341]    [Pg.447]    [Pg.276]    [Pg.372]    [Pg.770]    [Pg.161]    [Pg.225]    [Pg.1227]    [Pg.52]    [Pg.385]    [Pg.765]    [Pg.745]   
See also in sourсe #XX -- [ Pg.325 ]




SEARCH



Molecular Segregation at Periodic Metal Nano-Architectures on a Solid Surface

Molecular models, solid surface polymer melts

Molecular orientation entropy, solid surface

Molecular solids

Molecular surface

© 2024 chempedia.info