Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solid reference electrode, effect

Greater deviations which are occasionally observed between two reference electrodes in a medium are mostly due to stray electric fields or colloid chemical dielectric polarization effects of solid constituents of the medium (e.g., sand [3]) (see Section 3.3.1). Major changes in composition (e.g., in soils) do not lead to noticeable differences of diffusion potentials with reference electrodes in concentrated salt solutions. On the other hand, with simple metal electrodes which are sometimes used as probes for potential controlled rectifiers, certain changes are to be expected through the medium. In these cases the concern is not with reference electrodes, in principle, but metals that have a rest potential which is as constant as possible in the medium concerned. This is usually more constant the more active the metal is, which is the case, for example, for zinc but not stainless steel. [Pg.87]

Figure 5.36. Effect of electrochemical O2 pumping on the Zr 3dj XPS spectra of Pt/YSZ at 400°C (a) Zr 3d5/2 spectrum shift from AUWr=0 (solid curve) to AUwr=1. 2 V (dashed curve) (b) effect of overpotential AUv/r on the binding energy, Eb) and kinetic energy, (AEk--AEb) shifts of Zr 3dS/2 (filled circles, working electrode grounded) and Pt 4f7/2 (open circle, reference electrode grounded).6 Reprinted with permission from the American Chemical Society. Figure 5.36. Effect of electrochemical O2 pumping on the Zr 3dj XPS spectra of Pt/YSZ at 400°C (a) Zr 3d5/2 spectrum shift from AUWr=0 (solid curve) to AUwr=1. 2 V (dashed curve) (b) effect of overpotential AUv/r on the binding energy, Eb) and kinetic energy, (AEk--AEb) shifts of Zr 3dS/2 (filled circles, working electrode grounded) and Pt 4f7/2 (open circle, reference electrode grounded).6 Reprinted with permission from the American Chemical Society.
The measurement of potentials in electrolytes is not as easy as it is for solid-state devices. Depending on the composition of the electrolyte and the electrode material a monolayer of adsorbates or a thin passivation layer may be formed on the electrode, and can significantly shift the electrode potential. These effects have to be taken into account for the working as well as for the counter electrode. The potential at the latter becomes irrelevant if a reference electrode is used. The reference electrode should be placed as close as possible to the Si electrode or it can access the Si electrode via a capillary. The size of the reference electrode is not rel-... [Pg.12]

Ion-selective electrodes are systems containing a membrane consisting basically either of a layer of solid electrolyte or of an electrolyte solution whose solvent is immiscible with water. The membrane is in contact with an aqueous electrolyte solution on both sides (or sometimes only on one). The ion-selective electrode frequently contains an internal reference electrode, sometimes only a metallic contact, or, for an ion-selective field-effect transistor (ISFET), an insulating and a semiconducting layer. In order to understand what takes place at the boundary between the membrane and the other phases with which it is in contact, various types of electric potential or of potential difference formed in these membrane systems must first be defined. [Pg.14]

Ion-Selective Field Effect Transistors [22b,c,d] An ion-selective field effect transistor (ISFET) is a hybrid of an ion-selective electrode and a metal-oxide semiconductor field effect transistor (MOSFET), the metal gate of the MOSFET being replaced by or contacted with a thin film of a solid or liquid ion-sensitive material. The ISFET and a reference electrode are immersed in the solution containing ion i, to which the ISFET is sensitive, and electrically connected as in Fig. 5.37. A potential which varies with the activity of ion i, o(i), as in Eq. (5.38), is developed at the ion-sensitive film ... [Pg.152]

Ion-selective membranes can be used in two basic configurations. If the solution is placed on either side of the membrane, the arrangement (e.g., Fig. 6.16a) is symmetrical. It is found in conventional ion-selective electrodes in which the internal contact is realized by the solution in which the internal reference electrode is immersed. In the nonsymmetrical arrangement (Fig. 6.16b), one side of the membrane is contacted by the sample (usually aqueous), and the other side is interfaced with some solid material. Examples of this type are coated wire electrodes and Ion-Sensitive Field-Effect Transistors (ISFETs). [Pg.150]

Electrometer amplifier— An electronic amplifier with an extremely high -> input impedance (Rln > 1014 Q). The device allows measurements of electrical voltages (potentials) at practically zero current. Early devices employed specially designed and selected vacuum tubes (electrometer tubes) operated in a mode with very low grid current. The development of field effect transistors of various types allowed the application of solid-state devices. Electrometer amplifiers are employed in - pH meters (and generally in so-called pi meters, where I stands for ion), all types of instruments for po-tentiometric measurements and in the reference electrode input of -> potentiostats. Because of the high input impedance electrometer amplifiers are sensitive towards electric interferences, consequently some potentiostats have their -> reference electrode input circuitry (essentially an electrometer amplifier) mounted in a separate housing to be attached as close as possible to the reference electrode in order to minimize external interference. [Pg.227]

Ion-Selective Field Effect Transistors. Ion-selective field effect transistors (ISFETs) are semiconductor devices related to the solid-state detectors used in spectroscopy (discussed in Chapter 5). In this case, the surface of the transistor is covered with silicon nitride, which adsorbs H ions from the sample solution. The degree of adsorption is a function of the pH of the sample solution and the adsorption of H" " ions results in a change in the conductivity of the ISEET channel. The cell requires an external reference electrode. ISEET pH sensors can be made extremely small (about 2 mm ) and are extremely rugged, unlike the fragile glass bulb pH electrode. They have rapid response times and can operate in corrosive samples, slurries, and even wet solids such as food products. The sensor can be scrubbed clean with a toothbrush, stored in a dry condition, and does not require hydrating... [Pg.944]

Fig.l ISEs (a) The solid membrane (b) liquid membrane (c) coated-wire electrode (d) field-effect transistor. The analyte solution is in contact with the ion-selective layers potentials for A-C are measured using an external reference electrode, while the drain current, 7,, is monitored using a current-to-voltage converter in D. [Pg.5606]

G. Hsieh, T. O. Mason, E. J. Garhoczi, and L. R. Pederson [1997] Experimental Limitations in Impedance Spectroscopy Part in. Effect of reference electrode geometry/position. Solid State Ionics 96, 153-172. [Pg.557]


See other pages where Solid reference electrode, effect is mentioned: [Pg.313]    [Pg.363]    [Pg.132]    [Pg.19]    [Pg.627]    [Pg.637]    [Pg.49]    [Pg.311]    [Pg.442]    [Pg.389]    [Pg.156]    [Pg.81]    [Pg.191]    [Pg.131]    [Pg.30]    [Pg.55]    [Pg.105]    [Pg.91]    [Pg.166]    [Pg.135]    [Pg.572]    [Pg.504]    [Pg.192]    [Pg.2]    [Pg.29]    [Pg.441]    [Pg.753]    [Pg.554]    [Pg.96]    [Pg.192]    [Pg.283]    [Pg.753]    [Pg.1068]    [Pg.168]    [Pg.444]    [Pg.54]    [Pg.26]    [Pg.285]   


SEARCH



Effect solids

Reference electrodes

Solid electrode

Solid reference electrode, effect electrolytes

© 2024 chempedia.info