Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solid intermetallic phases

Another characteristic point is the special attention that in intermetallic science, as in several fields of chemistry, needs to be dedicated to the structural aspects and to the description of the phases. The structure of intermetallic alloys in their different states, liquid, amorphous (glassy), quasi-crystalline and fully, three-dimensionally (3D) periodic crystalline are closely related to the different properties shown by these substances. Two chapters are therefore dedicated to selected aspects of intermetallic structural chemistry. Particular attention is dedicated to the solid state, in which a very large variety of properties and structures can be found. Solid intermetallic phases, generally non-molecular by nature, are characterized by their 3D crystal (or quasicrystal) structure. A great many crystal structures (often complex or very complex) have been elucidated, and intermetallic crystallochemistry is a fundamental topic of reference. A great number of papers have been published containing results obtained by powder and single crystal X-ray diffractometry and by neutron and electron diffraction methods. A characteristic nomenclature and several symbols and representations have been developed for the description, classification and identification of these phases. [Pg.2]

The situation in the solid state is generally more complex. Several examples of binary systems were seen in which, in the solid state, a number of phases (intermediate and terminal) are formed. See for instance Figs 2.18-2.21. Both stoichiometric phases (compounds) and variable composition phases (solid solutions) may be considered and, as for their structures, both fully ordered or more or less completely disordered phases. This variety of types is characteristic for the solid alloys. After a few comments on liquid alloys, particular attention will therefore be dedicated in the following paragraphs to the description and classification of solid intermetallic phases. [Pg.81]

In the previous chapter we looked at some questions concerning solid intermetallic phases both terminal (that is solubility fields which include one of the components) and intermediate. Particularly we have seen, in several alloy systems, the formation in the solid state of intermetallic compounds or, more generally, intermetallic phases. A few general and introductory remarks about these phases have been presented by means of Figs. 2.2-2.4, in which structural schemes of ordered and disordered phases have been suggested. On the other hand we have seen that in binary (and multi-component) metal systems, several crystalline phases (terminal and intermediate, stable and also metastable) may occur. [Pg.87]

As a starting point in the description of the solid intermetallic phases it is useful to recall that their identification and classification requires information about their chemical composition and structure. To be consistent with other fields of descriptive chemistry, this information should be included in specific chemical and structural formulae built up according to well-defined rules. This task, however, in the specific domain of the intermetallic phases, or more generally in the area of solid-state chemistry, is much more complicated than for other chemical compounds. This complexity is related both to the chemical characteristics (formation of variable composition phases) and to the structural properties, since the intermetallic compounds are generally non-molecular in nature, while the conventional chemical symbolism has been mainly developed for the representation of molecular units. As a consequence there is no complete, or generally accepted, method of representing the formulae of intermetallic compounds. [Pg.88]

It is important to understand the thermodynamic basis of the phase diagram to which an alloy belongs. A congruently melting intermetallic compound (e.g., UAlj in Fig. 1) may melt above or below the mp of its end members. A solid intermetallic phase... [Pg.53]

It would be interesting to further examine the vaporization of Pu-intermetallics at higher temperatures in order to search for molecular vapor species involving Pu and the noble metals. Due to the directional nature of 5f electrons in Pu, they may not be involved in the bonding of the solid intermetallics, but could contribute to the stability of a gas phase molecule. Additional measurements of the thermodynamic stabilities of Np- and Am-noble metal intermetallics corresponding to the Pu phases considered in this work would also assist in establishing bonding trends. [Pg.109]

Two phase diagrams are available for lithium-copper systems. No intermetallic phases were found, but LiCu4 was later observed. Substantial solid solubility of lithium in copper approaching 20 at% at the melting point of Li has been observed. [Pg.411]

In the previous paragraphs a brief account has been given of the fundamental aspects of the crystallographic description of the structures and structure types of solid phases. A number of symbols and names have been defined and their application to intermetallic compounds exemplified. It must, however, be underlined that both for historical reasons and for the need to improve classification and interpretation of the structural characteristics of intermetallic phases, other symbols and nomenclature criteria have been invented. Some of them have a mathematical basis, others are more colloquial. A selection of these criteria will be given in the following. [Pg.116]

Some aspects of the mentioned relationships have been presented in previous chapters while discussing special characteristics of the alloying behaviour. The reader is especially directed to Chapter 2 for the role played by some factors in the definition of phase equilibria aspects, such as compound formation capability, solid solution formation and their relationships with the Mendeleev Number and Pettifor and Villars maps. Stability and enthalpy of formation of alloys and Miedema s model and parameters have also been briefly commented on. In Chapter 3, mainly dedicated to the structural characteristics of the intermetallic phases, a number of comments have been reported about the effects of different factors, such as geometrical factor, atomic dimension factor, etc. on these characteristics. [Pg.237]

Notes on the alloy crystal chemistry of the 6th group metals. A selection of the intermetallic phases, and of their structures, formed by Cr, Mo and W is shown in Table 5.35. Attention has been given in this list to the presence of several tetrahedrally close-packed alloys, often corresponding to ranges of solid solutions. [Pg.418]

Many metals, alloys and intermetallic compounds (Me) react reversibly with gaseous H2 to form a metal hydride, MeHx, at practical temperatures and pressures. This simple reaction, neglecting the solid solution phase, may be written as ... [Pg.223]

Of the various solid intermetallic lithium compounds which might be used in high temperature cells, the Li-Al system has been most studied. The Li-Al phase diagram is shown in Fig. 8.1. An a phase which consists... [Pg.244]

Some stable ternary intermetallic phases have been found that are quasiperi-odic in two dimensions and periodic in the third. These are from the systems Al—Ni—Co, Al—Cu—Co, and Al—Mn—Pd. They contain decagonally packed groups of atoms (local tenfold rotational symmetry). It should be noted that there are also known metastable quasicrystals with local eightfold rotational symmetry (octagonal) and 12-fold rotational symmetry (dodecagonal) as well. The dodecahedron is also one of the five Platonic solids (Lalena and Cleary, 2005). [Pg.46]


See other pages where Solid intermetallic phases is mentioned: [Pg.437]    [Pg.233]    [Pg.437]    [Pg.233]    [Pg.394]    [Pg.42]    [Pg.1273]    [Pg.157]    [Pg.563]    [Pg.218]    [Pg.225]    [Pg.3]    [Pg.83]    [Pg.92]    [Pg.177]    [Pg.319]    [Pg.464]    [Pg.617]    [Pg.673]    [Pg.676]    [Pg.173]    [Pg.338]    [Pg.1585]    [Pg.304]    [Pg.173]    [Pg.167]    [Pg.258]    [Pg.167]    [Pg.362]    [Pg.3]    [Pg.79]   
See also in sourсe #XX -- [ Pg.87 ]




SEARCH



Intermetallic phases

Solid intermetallic phases crystal structure

Solid intermetallic phases formula

Solid intermetallic phases structures

© 2024 chempedia.info